A Simulation Approach Analyzing Random Motion Events Between A Machine And Its Operator
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners. As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i

A Simulation Approach Analyzing Random Motion Events Between A Machine And Its Operator

Filetype[PDF-895.86 KB]



Details:

  • Personal Author:
  • Description:
    This paper presents an approach for representing and analyzing random motions and hazardous events in a simulated three-dimensional workplace, providing designers and analysts with a new technique for evaluating operator-machine interaction hazards in virtual environments. Technical data in this paper is based upon a project striving to reduce workers' risks from being hit by underground mining machinery in a confined space. The project's methodology includes human factors design considerations, ergonomic modeling and simulation tools, laboratory validation, and collaboration with a mining equipment manufacturer. Hazardous conditions can be analyzed in virtual environments using collision detection. By simulating an operator's random behavior and machine's appendage velocity, researchers can accurately identify hazards, and use that information to form safe design parameters for mining equipment. Analysts must be discerning with the model and not read more from the databases than what the simulation model was designed to deliver. Simulations provided an interesting approach to data gathering in that there was no need for live subjects and logistics - test sites and costs associated with experiments-became insignificant. Collisions versus speed, operators' size, and risk behaviors proved the versatility found in the data obtained from the model. Preliminary results show that response time significantly affects the number of collisions experienced by the virtual subject. Also simulation data suggests that more mishaps occur with hand-on-boom-arm risk behavior.
  • Subjects:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at stacks.cdc.gov