U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Advances in Remote Sensing Techniques for Monitoring Rock Falls and Slope Failures

Public Domain
File Language:
English


Details

  • Personal Author:
  • Description:
    Ground control problems at surface mining operations can occur for a variety of reasons. Stress, gravity loading, rock strength, geology, pore pressure, weather effects, underground workings, and many other factors contribute to slope instabilities that range from small rock falls to massive slides of material. While some of these failures can be predicted or controlled by preventive measures, each year many completely unexpected failures occur. Current methods for monitoring generally involve measuring displacements at a few, selected points in and around the suspected area of instability. While most of the displacements along these points will be in a downslope direction, freeze-thaw cycles of water-filled joints, horizontal stresses or pressure, buoyancy in saturated soils, human measurement errors, or other situations can produce deformation in almost any direction, even without any instability in the slope. Determination of which, if any of the observed movements represents a potential hazard is essential. Because of the enormous surface area of many large open-pit mines, several varieties and scales of instability can occur. Small, unexpected rock falls may indeed be more hazardous than a massive failure that involves slow displacement of material over a longer period of time. Complete vigilance to detect all small potential falling blocks is neither feasible nor economical and certainly is not attainable using today's most common point displacement monitoring techniques. As part of an on-going study at the Spokane Research Laboratory, several new methods for monitoring slope instabilities are being investigated. This paper describes the potential adaptation of systems such as interferometric synthetic aperture radar, imaging spectroscopy, and time-domain reflectometry, to slope monitoring and design.
  • Subjects:
  • Document Type:
  • Genre:
  • CIO:
  • NIOSHTIC Number:
    nn:20000186
  • Collection(s):
  • Main Document Checksum:
    urn:sha-512:be208c178fbf580df08f28b92932517800573d29c7336e0960eb9abd3f2ae986aee668569ab39b58275602850dc8239630a3ff262ae0b9ec58409592ea60694c
  • Download URL:
  • File Type:
    Filetype[PDF - 370.58 KB ]
File Language:
English
ON THIS PAGE

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners.

As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.