Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A comparison of respirable crystalline silica concentration measurements using a direct-on-filter Fourier transform infrared (FT-IR) transmission method vs. a traditional laboratory X-ray diffraction method

Filetype[PDF-675.17 KB]


  • English

  • Details:

    • Alternative Title:
      J Occup Environ Hyg
    • Description:
      Evaluation and control of respirable crystalline silica (RCS) exposures are critical components of an effective mine industrial hygiene program. To provide more timely exposure data in the field, an end-of-shift Fourier transform infrared (FT-IR) spectrometry method has been developed for evaluation of direct-on-filter RCS. The present study aimed to apply this FT-IR method using field samples collected in three Northwestern U.S. metal/nonmetal mines and compare the results to traditional laboratory X-ray diffraction analysis (XRD). Seventy-five dust samples were analyzed using both methods. Samples for each mine were split in half by random assignment, with half used to create a calibration factor for the FT-IR analysis and half used to apply the calibration. Nonparametric correlational and two-sample comparative tests were used to assess the strength of association and the level of agreement between the two methods. Strong, positive correlations were observed between FT-IR and XRD RCS concentrations, with Spearman rank correlation coefficients ranging between 0.84 and 0.97. The mean RCS concentrations determined through FT-IR analysis were lower than through XRD analysis, with mean differences ranging from -4 to -133 ug/m| and mean percent errors ranging from 12% to 28%. There was a statistically significant improvement in the level of agreement between log FT-IR and log XRD RCS concentrations following calibration at two of the three mines, with mean differences of -0.03 (p = 0.002) and -0.02 (p = 0.044) in the log scale. The reduction in mean difference following calibration at the other mine was not statistically significant (mean log scale difference = -0.05, p = 0.215), but the differences between FT-IR and XRD were not significantly different without calibration (mean log scale difference = -0.07, p = 0.534). The results indicate that mine-specific calibration factors can improve the level of agreement between RCS concentrations determined via a field-based, end-of-shift FT-IR method in metal/non-metal mines as compared to traditional XRD analysis.
    • Pubmed ID:
      29985762
    • Pubmed Central ID:
      PMC6327839
    • Document Type:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov