Welcome to CDC stacks | Numerical and experimental investigation of carbon monoxide spread in underground mine fires - 59590 | CDC Public Access
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
Numerical and experimental investigation of carbon monoxide spread in underground mine fires
Filetype[PDF-1.48 MB]


Details:
  • Pubmed ID:
    30270967
  • Pubmed Central ID:
    PMC6159219
  • Description:
    The primary danger with underground mine fires is carbon monoxide poisoning. A good knowledge of smoke and carbon monoxide movement in an underground mine during a fire is of importance for the design of ventilation systems, emergency response, and miners' escape and rescue. Mine fire simulation software packages have been widely used to predict carbon monoxide concentration and its spread in a mine for effective mine fire emergency planning. However, they are not highly recommended to be used to forecast the actual carbon monoxide concentration due to lack of validation studies. In this article, MFIRE, a mine fire simulation software based on ventilation networks, was evaluated for its carbon monoxide spread prediction capabilities using experimental results from large-scale diesel fuel and conveyor belt fire tests conducted in the Safety Research Coal Mine at The National Institute for Occupational Safety and Health. The comparison between the simulation and test results of carbon monoxide concentration shows good agreement and indicates that MFIRE is able to predict the carbon monoxide spread in underground mine fires with confidence.

  • Document Type:
  • Collection(s):
  • Main Document Checksum:
No Related Documents.
You May Also Like: