CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i
STATIC AND ROVING SENSOR DATA FUSION FOR SPATIO-TEMPORAL HAZARD MAPPING WITH APPLICATION TO OCCUPATIONAL EXPOSURE ASSESSMENT1
-
3 2017
-
-
Source: Ann Appl Stat. 11(1):139-160
Details:
-
Alternative Title:Ann Appl Stat
-
Personal Author:
-
Description:Rapid technological advances have drastically improved the data collection capacity in occupational exposure assessment. However, advanced statistical methods for analyzing such data and drawing proper inference remain limited. The objectives of this paper are (1) to provide new spatio-temporal methodology that combines data from both roving and static sensors for data processing and hazard mapping across space and over time in an indoor environment, and (2) to compare the new method with the current industry practice, demonstrating the distinct advantages of the new method and the impact on occupational hazard assessment and future policy making in environmental health as well as occupational health. A novel spatio-temporal model with a continuous index in both space and time is proposed, and a profile likelihood-based model fitting procedure is developed that allows fusion of the two types of data. To account for potential differences between the static and roving sensors, we extend the model to have nonhomogenous measurement error variances. Our methodology is applied to a case study conducted in an engine test facility, and dynamic hazard maps are drawn to show features in the data that would have been missed by existing approaches, but are captured by the new method.
-
Keywords:
-
Source:
-
Pubmed ID:30100948
-
Pubmed Central ID:PMC6086369
-
Document Type:
-
Funding:
-
Volume:11
-
Issue:1
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type:
Supporting Files
-
gif jpeg gif jpeg gif jpeg gif jpeg gif jpeg gif xml pdf jpeg gif jpeg gif jpeg gif jpeg