Methane emissions and airflow patterns on a longwall face: Potential influences from longwall gob permeability distributions on a bleederless longwall panel
CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners. As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i

Methane emissions and airflow patterns on a longwall face: Potential influences from longwall gob permeability distributions on a bleederless longwall panel

Filetype[PDF-2.96 MB]



Details:

  • Alternative Title:
    Trans Soc Min Metall Explor Inc
  • Personal Author:
  • Description:
    Longwall face ventilation is an important component of the overall coal mine ventilation system. Increased production rates due to higher-capacity mining equipment tend to also increase methane emission rates from the coal face, which must be diluted by the face ventilation. Increases in panel length, with some mines exceeding 6,100 m (20,000 ft), and panel width provide additional challenges to face ventilation designs. To assess the effectiveness of current face ventilation practices at a study site, a face monitoring study with continuous monitoring of methane concentrations and automated recording of longwall shearer activity was combined with a tracer gas test on a longwall face. The study was conducted at a U.S. longwall mine operating in a thick, bituminous coal seam and using a U-type, bleederless ventilation system. Multiple gob gas ventholes were located near the longwall face. These boreholes had some unusual design concepts, including a system of manifolds to modify borehole vacuum and flow and completion depths close to the horizon of the mined coalbed that enabled direct communication with the mine atmosphere. The mine operator also had the capacity to inject nitrogen into the longwall gob, which occurred during the monitoring study. The results show that emission rates on the longwall face showed a very limited increase in methane concentrations from headgate to tailgate despite the occurrence of methane delays during monitoring. Average face air velocities were 3.03 m/s (596 fpm) at shield 57 and 2.20 m/s (433 fpm) at shield 165. The time required for the sulfur hexafluoride (SF|) peak to occur at each monitoring location has been interpreted as being representative of the movement of the tracer slug. The rate of movement of the slug was much slower in reaching the first monitoring location at shield 57 compared with the other face locations. This lower rate of movement, compared with the main face ventilation, is thought to be the product of a flow path within and behind the shields that is moving in the general direction of the headgate to the tailgate. Barometric pressure variations were pronounced over the course of the study and varied on a diurnal basis.
  • Subjects:
  • Source:
  • Pubmed ID:
    29780220
  • Pubmed Central ID:
    PMC5956541
  • Document Type:
  • Funding:
  • Volume:
    342
  • Issue:
    1
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov