Respirable Size-Selective Sampler for End-of-Shift Quartz Measurement: Development and Performance
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Add terms to the query box

Query box

Help
Clear All
i

Respirable Size-Selective Sampler for End-of-Shift Quartz Measurement: Development and Performance

Filetype[PDF-2.08 MB]



Details:

  • Alternative Title:
    J Occup Environ Hyg
  • Description:
    Aims of this study were to develop a respirable size-selective sampler for direct-on-filter (DoF) quartz measurement at the end-of-shift (EoS) using a portable Fourier transform infrared (FTIR) spectrometer and to determine its size-selective sampling performance. A new miniaturized sampler has been designed to have an effective particle deposition diameter close to the portable FTIR beam diameter (6 mm). The new sampler (named the EoS cyclone) was constructed using a 3D printer. The sampling efficiency of the EoS cyclone was determined using polydisperse glass sphere particles and a time-of-flight direct reading instrument. Respirable dust mass concentration and quartz absorbance levels of samples collected with the EoS cyclone were compared to those collected with the 10-mm nylon cyclone. The EoS cyclone operated at a flow rate of 1.2 l min(-1) showed minimum bias compared to the international standard respirable convention. The use of the EoS cyclone induced respirable dust mass concentration results similar but significantly larger (5%) than those obtained from samples collected with 10-mm nylon cyclones. The sensitivity of the DoF-FTIR analysis in estimating quartz was found increased more than 10 times when the samples were collected with the EoS cyclone. The average particle deposition diameter was 8.8 mm in 60 samples. The newly developed user friendly EoS cyclone may provide a better sampling strategy in quartz exposure assessment with faster feedback.
  • Pubmed ID:
    27792471
  • Pubmed Central ID:
    PMC5376232
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov