Heterogeneous shedding of influenza by human subjects and its implications for epidemiology and control
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Heterogeneous shedding of influenza by human subjects and its implications for epidemiology and control

Filetype[PDF-473.26 KB]

  • English

  • Details:

    • Alternative Title:
      Sci Rep
    • Description:
      Heterogeneity of infectiousness is an important feature of the spread of many infections, with implications for disease dynamics and control, but its relevance to human influenza virus is still unclear. For a transmission event to occur, an infected individual needs to release infectious particles via respiratory symptoms. Key factors to take into account are virus dynamics, particle release in relation to respiratory symptoms, the amount of virus shed and, importantly, how these vary between infected individuals. A quantitative understanding of the process of influenza transmission is relevant to designing effective mitigation measures. Here we develop an influenza infection dynamics model fitted to virological, systemic and respiratory symptoms to investigate how within-host dynamics relates to infectiousness. We show that influenza virus shedding is highly heterogeneous between subjects. From analysis of data on experimental infections, we find that a small proportion (<20%) of influenza infected individuals are responsible for the production of 95% of infectious particles. Our work supports targeting mitigation measures at most infectious subjects to efficiently reduce transmission. The effectiveness of public health interventions targeted at highly infectious individuals would depend on accurate identification of these subjects and on how quickly control measures can be applied.
    • Pubmed ID:
    • Pubmed Central ID:
    • Document Type:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov