i
Off-road truck-related accidents in U.S. mines
-
Jul 25 2016
Source: J Safety Res. 58:79-87 -
Alternative Title:J Safety Res
-
Publisher's site:
-
Personal Author:
-
Description:Introduction
Off-road trucks are one of the major sources of equipment-related accidents in the U.S. mining industries. A systematic analysis of all off-road truck-related accidents, injuries, and illnesses, which are reported and published by the Mine Safety and Health Administration (MSHA), is expected to provide practical insights for identifying the accident patterns and trends in the available raw database. Therefore, appropriate safety management measures can be administered and implemented based on these accident patterns/trends.
Methods
A hybrid clustering-classification methodology using K-means clustering and gene expression programming (GEP) is proposed for the analysis of severe and non-severe off-road truck-related injuries at U.S. mines. Using the GEP sub-model, a small subset of the 36 recorded attributes was found to be correlated to the severity level.
Results
Given the set of specified attributes, the clustering sub-model was able to cluster the accident records into 5 distinct groups. For instance, the first cluster contained accidents related to minerals processing mills and coal preparation plants (91%). More than two-thirds of the victims in this cluster had less than 5 years of job experience. This cluster was associated with the highest percentage of severe injuries (22 severe accidents, 3.4%). Almost 50% of all accidents in this cluster occurred at stone operations. Similarly, the other four clusters were characterized to highlight important patterns that can be used to determine areas of focus for safety initiatives.
Conclusions
The identified clusters of accidents may play a vital role in the prevention of severe injuries in mining. Further research into the cluster attributes and identified patterns will be necessary to determine how these factors can be mitigated to reduce the risk of severe injuries.
Practical application
Analyzing injury data using data mining techniques provides some insight into attributes that are associated with high accuracies for predicting injury severity.
-
Subject:
-
Source:
-
Pubmed ID:27620937
-
Pubmed Central ID:PMC5023031
-
Document Type:
-
Place as Subject:
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type:
-
jpeg gif jpeg gif jpeg gif jpeg xml gif jpeg gif jpeg gif jpeg gif
Details:
Supporting Files
More +