Implementation of coordinated global serotype 2 oral poliovirus vaccine cessation: risks of potential non-synchronous cessation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Implementation of coordinated global serotype 2 oral poliovirus vaccine cessation: risks of potential non-synchronous cessation

Filetype[PDF-2.43 MB]


  • English

  • Details:

    • Alternative Title:
      BMC Infect Dis
    • Description:
      Background

      The endgame for polio eradication involves coordinated global cessation of oral poliovirus vaccine (OPV) with cessation of serotype 2 OPV (OPV2 cessation) implemented in late April and early May 2016 and cessation of serotypes 1 and 3 OPV (OPV13 cessation) currently planned for after 2018. The logistics associated with globally switching all use of trivalent OPV (tOPV) to bivalent OPV (bOPV) represent a significant undertaking, which may cause some complications, including delays that lead to different timing of the switch across shared borders.

      Methods

      Building on an integrated global model for long-term poliovirus risk management, we consider the expected vulnerability of different populations to transmission of OPV2-related polioviruses as a function of time following the switch. We explore the relationship between the net reproduction number (Rn) of OPV2 at the time of the switch and the time until OPV2-related viruses imported from countries still using OPV2 can establish transmission. We also analyze some specific situations modeled after populations at high potential risk of circulating serotype 2 vaccine-derived poliovirus (cVDPV2) outbreaks in the event of a non-synchronous switch.

      Results

      Well-implemented tOPV immunization activities prior to the tOPV to bOPV switch (i.e., tOPV intensification sufficient to prevent the creation of indigenous cVDPV2 outbreaks) lead to sufficient population immunity to transmission to cause die-out of any imported OPV2-related viruses for over 6 months after the switch in all populations in the global model. Higher Rn of OPV2 at the time of the switch reduces the time until imported OPV2-related viruses can establish transmission and increases the time during which indigenous OPV2-related viruses circulate. Modeling specific connected populations suggests a relatively low vulnerability to importations of OPV2-related viruses that could establish transmission in the context of a non-synchronous switch from tOPV to bOPV, unless the gap between switch times becomes very long (>6 months) or a high risk of indigenous cVDPV2s already exists in the importing and/or the exporting population.

      Conclusions

      Short national discrepancies in the timing of the tOPV to bOPV switch will likely not significantly increase cVDPV2 risks due to the insurance provided by tOPV intensification efforts, although the goal to coordinate national switches within the globally agreed April 17-May 1, 2016 time window minimized the risks associated with cross-border importations.

    • Pubmed ID:
      27230071
    • Pubmed Central ID:
      PMC4880825
    • Document Type:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov