Welcome to CDC Stacks | A Simplified Method for Quantifying Sulfur Mustard Adducts to Blood Proteins by Ultra-High Pressure Liquid Chromatography-Isotope Dilution Tandem Mass Spectrometry - 38982 | CDC Public Access
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
A Simplified Method for Quantifying Sulfur Mustard Adducts to Blood Proteins by Ultra-High Pressure Liquid Chromatography-Isotope Dilution Tandem Mass Spectrometry
Filetype[PDF - 239.71 KB]


Details:
  • Pubmed ID:
    25622494
  • Pubmed Central ID:
    PMC4836402
  • Funding:
    CC999999/Intramural CDC HHS/United States
  • Document Type:
  • Collection(s):
  • Description:
    Sulfur mustard binds to reactive cysteine residues, forming a stable sulfur-hydroxyethylthioethyl [SHETE]adduct that can be used as a long-term biomarker of sulfur mustard exposure in humans. The digestion of sulfur mustard-exposed blood samples with proteinase K following total protein precipitation with acetone produces the tripeptide biomarker [S-HETE]-Cys-Pro-Phe. The adducted tripeptide is purified by solid phase extraction, separated by ultra high pressure liquid chromatography, and detected by isotope dilution tandem mass spectrometry. This approach was thoroughly validated and characterized in our laboratory. The average interday relative standard deviation was ≤ 9.49%, and the range of accuracy was between 96.1 and 109% over a concentration range of 3.00 to 250. ng/mL with a calculated limit of detection of1.74 ng/mL. A full 96-well plate can be processed and analyzed in 8 h, which is 5 times faster than our previous 96-well plate method and only requires 50 μL of serum, plasma, or whole blood. Extensive ruggedness and stability studies and matrix comparisons were conducted to create a robust, easily transferrable method. As a result, a simple and high-throughput method has been developed and validated for the quantitation of sulfur mustard blood protein adducts in low volume blood specimens which should be readily adaptable for quantifying human exposures to other alkylating agents.