CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i
Exposure and Emissions Monitoring during Carbon Nanofiber Production—Part I: Elemental Carbon and Iron–Soot Aerosols
-
11 2011
-
-
Source: Ann Occup Hyg. 55(9):1016-1036
Details:
-
Alternative Title:Ann Occup Hyg
-
Personal Author:
-
Description:Production of carbon nanofibers and nanotubes (CNFs/CNTs) and their composite products is increasing globally. High volume production may increase the exposure risks for workers who handle these materials. Though health effects data for CNFs/CNTs are limited, some studies raise serious health concerns. Given the uncertainty about their potential hazards, there is an immediate need for toxicity data and field studies to assess exposure to CNFs/CNTs. An extensive study was conducted at a facility that manufactures and processes CNFs. Filter, sorbent, cascade impactor, bulk, and microscopy samples, combined with direct-reading instruments, provided complementary information on air contaminants. Samples were analyzed for organic carbon (OC) and elemental carbon (EC), metals, and polycyclic aromatic hydrocarbons (PAHs), with EC as a measure of CNFs. Transmission electron microscopy with energy-dispersive X-ray spectroscopy also was applied. Fine/ultrafine iron-rich soot, PAHs, and carbon monoxide were production byproducts. Direct-reading instrument results were reported previously [Evans DE et al. (Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg 2010;54:514-31.)] Results for time-integrated samples are reported as companion papers in this Issue. OC and EC, metals, and microscopy results are reported here, in Part I, while results for PAHs are reported in Part II [Birch ME. (Exposure and Emissions Monitoring during Carbon Nanofiber Production-Part II: Polycyclic Aromatic Hydrocarbons. Ann. Occup. Hyg 2011; 55: 1037-47.)]. Respirable EC area concentrations inside the facility were about 6-68 times higher than outdoors, while personal breathing zone samples were up to 170 times higher.
-
Subjects:
-
Keywords:
-
Source:
-
Pubmed ID:21965464
-
Pubmed Central ID:PMC4689224
-
Document Type:
-
Funding:
-
Volume:55
-
Issue:9
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type:
Supporting Files
-
gif jpeg gif jpeg gif jpeg gif jpeg gif jpeg pdf gif jpeg gif jpeg gif jpeg gif jpeg xml gif jpeg gif jpeg gif jpeg