Optimization of peptide substrates for botulinum neurotoxin E improves detection sensitivity in the Endopep-MS assay
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Optimization of peptide substrates for botulinum neurotoxin E improves detection sensitivity in the Endopep-MS assay

Filetype[PDF-479.81 KB]



Details:

  • Alternative Title:
    Anal Biochem
  • Description:
    Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are the most poisonous substances known to humankind. It is essential to have a simple, quick, and sensitive method for the detection and quantification of botulinum toxin in various media, including complex biological matrices. Our laboratory has developed a mass spectrometry-based Endopep-MS assay that is able to rapidly detect and differentiate all types of BoNTs by extracting the toxin with specific antibodies and detecting the unique cleavage products of peptide substrates. Botulinum neurotoxin type E (BoNT/E) is a member of a family of seven distinctive BoNT serotypes (A-G) and is the causative agent of botulism in both humans and animals. To improve the sensitivity of the Endopep-MS assay, we report here the development of novel peptide substrates for the detection of BoNT/E activity through systematic and comprehensive approaches. Our data demonstrate that several optimal peptides could accomplish 500-fold improvement in sensitivity compared with the current substrate for the detection of both not-trypsin-activated and trypsin-activated BoNT/E toxin complexes. A limit of detection of 0.1 mouse LD50/ml was achieved using the novel peptide substrate in the assay to detect not-trypsin-activated BoNT/E complex spiked in serum, stool, and food samples.
  • Pubmed ID:
    25232998
  • Pubmed Central ID:
    PMC4583364
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov