“Real-world” precision, bias, and between-laboratory variation for surface area measurement of a titanium dioxide nanomaterial in powder form
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

“Real-world” precision, bias, and between-laboratory variation for surface area measurement of a titanium dioxide nanomaterial in powder form

Filetype[PDF-165.16 KB]



Details:

  • Alternative Title:
    J Nanopart Res
  • Description:
    Accurate characterization of nanomaterial properties is a critical component of any nanotoxicology testing strategy. Data that describes the performance of various laboratories in measuring the characteristics of the same nanomaterial are scarce. We conducted an inter-laboratory study to evaluate "real-world" precision and bias of specific surface area measurements using a powered material containing sub-30 nm primary crystallites. Each participant was provided a sample of NIST Standard Reference Material 1898 (Titanium Dioxide Nanomaterial) and a sample preparation and analysis protocol. Based on results from 19 laboratories, overall performance was good. Estimates of precision ranged from 0.10 to 3.96 % and measurement bias was generally within ±5 % of the certified surface area value of the material. Between-laboratory variability accounted for 91 % of the total variance and is likely explained by gravimetric errors. Reliable determination of intrinsic nanomaterial properties such as surface area will permit development of protocols for toxicity testing, verification of laboratory proficiency, and consistency in interpretation of toxicity study data.
  • Pubmed ID:
    26251637
  • Pubmed Central ID:
    PMC4523471
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov