CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i
Occupational radon exposure and lung cancer mortality: estimating intervention effects using the parametric G formula
-
Nov 2014
-
-
Source: Epidemiology. 25(6):829-834.
Details:
-
Alternative Title:Epidemiology
-
Personal Author:
-
Description:Background
Traditional regression analysis techniques used to estimate associations between occupational radon exposure and lung cancer focus on estimating the effect of cumulative radon exposure on lung cancer, while public health interventions are typically based on regulating radon concentration rather than workers’ cumulative exposure. Moreover, estimating the direct effect of cumulative occupational exposure on lung cancer may be difficult in situations vulnerable to the healthy worker survivor bias.
Methods
Workers in the Colorado Plateau Uranium Miners cohort (N=4,134) entered the study between 1950 and 1964 and were followed for lung cancer mortality through 2005. We use the parametric g-formula to compare the observed lung cancer mortality to the potential lung cancer mortality had each of 3 policies to limit monthly radon exposure been in place throughout follow-up.
Results
There were 617 lung cancer deaths over 135,275 person-years of follow-up. With no intervention on radon exposure, estimated lung cancer mortality by age 90 was 16%. Lung cancer mortality was reduced for all interventions considered, and larger reductions in lung cancer mortality were seen for interventions with lower monthly radon exposure limits. The most stringent guideline, the Mine Safety and Health Administration standard of 0.33 working level months, reduced lung cancer mortality from 16% to 10% (risk ratio 0.67; 95% confidence interval 0.61, 0.73).
Conclusions
This work illustrates the utility of the parametric g-formula for estimating the effects of policies regarding occupational exposures, particularly in situations vulnerable to the healthy worker survivor bias.
-
Subjects:
-
Source:
-
Pubmed ID:25192403
-
Pubmed Central ID:PMC4524349
-
Document Type:
-
Funding:
-
Volume:25
-
Issue:6
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: