CFD modelling of nitrogen injection in a longwall gob area
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

CFD modelling of nitrogen injection in a longwall gob area

Filetype[PDF-687.68 KB]



Details:

  • Alternative Title:
    Int J Min Miner Eng
  • Description:
    This paper describes computational fluid dynamics (CFD) simulations conducted to investigate the effectiveness of N2 injection in an active panel and a sealed longwall gob area to prevent and suppress spontaneous heating of coal using various injection locations and flow rates. In the active panel simulations, a single longwall panel with a bleederless ventilation system was simulated. The spontaneous heating of crushed coal from pillars was simulated and N2 was injected from different locations on the headgate side and through boreholes from the surface. The N2 injection rate at each location was varied between 0.18 m(3)/s and 0.94 m(3)/s (380 and 2000 cfm). In the sealed longwall simulations, seal leakage rate was varied to determine its effect on N2 injection effectiveness. The results of this study should aid mine ventilation engineers in developing more effective N2 injection strategies to prevent and control spontaneous heating of coal in underground coal mines.
  • Pubmed ID:
    26213573
  • Pubmed Central ID:
    PMC4512941
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov