First arrived takes all: inhibitory priority effects dominate competition between co-infecting Borrelia burgdorferi strains
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners. As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i

First arrived takes all: inhibitory priority effects dominate competition between co-infecting Borrelia burgdorferi strains

Filetype[PDF-765.00 KB]


English

Details:

  • Alternative Title:
    BMC Microbiol
  • Personal Author:
  • Description:
    Background

    Within-host microbial communities and interactions among microbes are increasingly recognized as important factors influencing host health and pathogen transmission. The microbial community associated with a host is indeed influenced by a complex network of direct and indirect interactions between the host and the lineages of microbes it harbors, but the mechanisms are rarely established. We investigated the within-host interactions among strains of Borrelia burgdorferi, the causative agent of Lyme disease, using experimental infections in mice. We used a fully crossed-design with three distinct strains, each group of hosts receiving two sequential inoculations. We used data from these experimental infections to assess the effect of coinfection on bacterial dissemination and fitness (by measuring the transmission of bacteria to xenodiagnostic ticks) as well as the effect of coinfection on host immune response compared to single infection.

    Results

    The infection and transmission data strongly indicate a competitive interaction among B. burgdorferi strains within a host in which the order of appearance of the strain is the main determinant of the competitive outcome. This pattern is well described by the classic priority effect in the ecological literature. In all cases, the primary strain a mouse was infected with had an absolute fitness advantage primarily since it was transmitted an order of magnitude more than the secondary strain. The mechanism of exclusion of the secondary strain is an inhibition of the colonization of mouse tissues, even though 29% of mice showed some evidence of infection by secondary strain. Contrary to expectation, the strong and specific adaptive immune response evoked against the primary strain was not followed by production of immunoglobulins after the inoculation of the secondary strain, neither against strain-specific antigen nor against antigens common to all strains. Hence, the data do not support a major role of the immune response in the observed priority effect.

    Conclusion

    The strong inhibitory priority effect is a dominant mechanism underlying competition for transmission between coinfecting B. burgdorferi strains, most likely through resource exploitation. The observed priority effect could shape bacterial diversity in nature, with consequences in epidemiology and evolution of the disease.

    Electronic supplementary material

    The online version of this article (doi:10.1186/s12866-015-0381-0) contains supplementary material, which is available to authorized users.

  • Subjects:
  • Source:
  • Pubmed ID:
    25887119
  • Pubmed Central ID:
    PMC4359528
  • Document Type:
  • Funding:
  • Volume:
    15
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov