Respirable Silica Dust Suppression During Artificial Stone Countertop Cutting
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Respirable Silica Dust Suppression During Artificial Stone Countertop Cutting

Filetype[PDF-728.01 KB]


  • Alternative Title:
    Ann Occup Hyg
  • Description:

    To assess the relative efficacy of three types of controls in reducing respirable silica exposure during artificial stone countertop cutting with a handheld circular saw.


    A handheld worm drive circular saw equipped with a diamond segmented blade was fitted with water supply to wet the blade as is typical. The normal wetted-blade condition was compared to (i) wetted-blade plus ‘water curtain’ spray and (ii) wetted-blade plus local exhaust ventilation (LEV). Four replicate 30-min trials of 6-mm deep, 3-mm wide cuts in artificial quartz countertop stone were conducted at each condition in a 24-m3 unventilated tent. One dry cutting trial was also conducted for comparison. Respirable cyclone breathing zone samples were collected on the saw operator and analyzed gravimetrically for respirable mass and by X-ray diffraction for respirable quartz mass.


    Mean quartz content of the respirable dust was 58.5%. The ranges of 30-min mass and quartz task concentrations in mg m−3 were as follows—wet blade alone: 3.54–7.51 and 1.87–4.85; wet blade + curtain: 1.81–5.97 and 0.92–3.41; and wet blade + LEV: 0.20–0.69 and <0.12–0.20. Dry cutting task concentrations were 69.6mg m−3 mass and 44.6mg m−3 quartz. There was a statistically significant difference (α = 0.05) between the wet blade + LEV and wet blade only conditions, but not between the wet blade + curtain and wet blade only conditions, for both respirable dust and respirable silica.


    Sawing with a wetted blade plus LEV reduced mean respirable dust and quartz task exposures by a factor of 10 compared to the wet blade only condition. We were unable to show a statistically significant benefit of a water curtain in the ejection path, but the data suggested some respirable dust suppression.

  • Pubmed ID:
  • Pubmed Central ID:
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

You May Also Like

Checkout today's featured content at