Rapid recovery from K current inactivation on membrane hyperpolarization in molluscan neurons
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Add terms to the query box

Query box

Help
Clear All
i

Rapid recovery from K current inactivation on membrane hyperpolarization in molluscan neurons

  • Dec 1984

  • Source: J Gen Physiol. 84(6):861-875.
Filetype[PDF-849.98 KB]



Details:

  • Alternative Title:
    J Gen Physiol
  • Description:
    Recovery from K current inactivation was studied in molluscan neurons using two-microelectrode and internal perfusion voltage clamps. Experiments were designed to study the voltage-dependent delayed outward current (IK) without contamination from other K currents. The amount of recovery from inactivation and the rate of recovery increase dramatically when the membrane potential is made more negative. The time course of recovery at the resting potential, -40 mV, is well fit by a single exponential with a time constant of 24.5 s (n = 7). At more negative voltages, the time course is best fit by the sum of two exponentials with time constants at -90 mV of 1.7 and 9.8 s (n = 7). In unclamped cells, a short hyperpolarization can cause rapid recovery from inactivation that results in a shortening of the action potential duration. We conclude that there are two inactivated states of the channel and that the time constants for recovery from both states are voltage dependent. The results are discussed in terms of the multistate model for K channel gating that was developed by R. N. Aldrich (1981, Biophys. J., 36:519-532).
  • Pubmed ID:
    6097637
  • Pubmed Central ID:
    PMC2228767
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at stacks.cdc.gov