Nuclear envelope breakdown is under nuclear not cytoplasmic control in sea urchin zygotes
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Nuclear envelope breakdown is under nuclear not cytoplasmic control in sea urchin zygotes

  • Jun 1995

  • Source: J Cell Biol. 129(6):1447-1458.
Filetype[PDF-2.91 MB]

  • English

  • Details:

    • Alternative Title:
      J Cell Biol
    • Description:
      Nuclear envelope breakdown (NEB) and entry into mitosis are though to be driven by the activation of the p34cdc2-cyclin B kinase complex or mitosis promoting factor (MPF). Checkpoint control mechanisms that monitor essential preparatory events for mitosis, such as DNA replication, are thought to prevent entry into mitosis by downregulating MPF activation until these events are completed. Thus, we were surprised to find that when pronuclear fusion in sea urchin zygotes is blocked with Colcemid, the female pronucleus consistently breaks down before the male pronucleus. This is not due to regional differences in the time of MPF activation, because pronuclei touching each other break down asynchronously to the same extent. To test whether NEB is controlled at the nuclear or cytoplasmic level, we activated the checkpoint for the completion of DNA synthesis separately in female and male pronuclei by treating either eggs or sperm before fertilization with psoralen to covalently cross-link base-paired strands of DNA. When only the maternal DNA is cross-linked, the male pronucleus breaks down first. When the sperm DNA is cross-linked, male pronuclear breakdown is substantially delayed relative to female pronuclear breakdown and sometimes does not occur. Inactivation of the Colcemid after female NEB in such zygotes with touching pronuclei yields a functional spindle composed of maternal chromosomes and paternal centrosomes. The intact male pronucleus remains located at one aster throughout mitosis. In other experiments, when psoralen-treated sperm nuclei, over 90% of the zygote nuclei do not break down for at least 2 h after the controls even though H1 histone kinase activity gradually rises close to, or higher than, control mitotic levels. The same is true for normal zygotes treated with aphidicolin to block DNA synthesis. From these results, we conclude that NEB in sea urchin zygotes is controlled at the nuclear, not cytoplasmic, level, and that mitotic levels of cytoplasmic MPF activity are not sufficient to drive NEB for a nucleus that is under checkpoint control. Our results also demonstrate that the checkpoint for the completion of DNA synthesis inhibits NEB by acting primarily within the nucleus, not by downregulating the activity of cytoplasmic MPF.
    • Pubmed ID:
    • Pubmed Central ID:
    • Document Type:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    Supporting Files

    More +

    You May Also Like

    Checkout today's featured content at