Cholera transmission dynamic models for public health practitioners
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Cholera transmission dynamic models for public health practitioners

Filetype[PDF-909.66 KB]



Details:

  • Alternative Title:
    Emerg Themes Epidemiol
  • Personal Author:
  • Description:
    Great progress has been made in mathematical models of cholera transmission dynamics in recent years. However, little impact, if any, has been made by models upon public health decision-making and day-to-day routine of epidemiologists. This paper provides a brief introduction to the basics of ordinary differential equation models of cholera transmission dynamics. We discuss a basic model adapted from Codeço (2001), and how it can be modified to incorporate different hypotheses, including the importance of asymptomatic or inapparent infections, and hyperinfectious V. cholerae and human-to-human transmission. We highlight three important challenges of cholera models: (1) model misspecification and parameter uncertainty, (2) modeling the impact of water, sanitation and hygiene interventions and (3) model structure. We use published models, especially those related to the 2010 Haitian outbreak as examples. We emphasize that the choice of models should be dictated by the research questions in mind. More collaboration is needed between policy-makers, epidemiologists and modelers in public health.
  • Subjects:
  • Source:
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov