Measuring the effect of commuting on the performance of the Bayesian Aerosol Release Detector
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Measuring the effect of commuting on the performance of the Bayesian Aerosol Release Detector

Filetype[PDF-476.54 KB]



Details:

  • Alternative Title:
    BMC Med Inform Decis Mak
  • Personal Author:
  • Description:
    Background

    Early detection of outdoor aerosol releases of anthrax is an important problem. The Bayesian Aerosol Release Detector (BARD) is a system for detecting releases of aerosolized anthrax and characterizing them in terms of location, time and quantity. Modelling a population's exposure to aerosolized anthrax poses a number of challenges. A major difficulty is to accurately estimate the exposure level--the number of inhaled anthrax spores--of each individual in the exposed region. Partly, this difficulty stems from the lack of fine-grained data about the population under surveillance. To cope with this challenge, nearly all anthrax biosurveillance systems, including BARD, ignore the mobility of the population and assume that exposure to anthrax would occur at one's home administrative unit--an assumption that limits the fidelity of the model.

    Methods

    We employed commuting data provided by the U.S. Census Bureau to parameterize a commuting model. Then, we developed methods for integrating commuting into BARD's simulation and detection algorithms and conducted two studies to measure the effect. The first study (simulation study) was designed to assess how BARD's detection and characterization performance are impacted by incorporation of commuting in BARD's outbreak-simulation algorithm. The second study (detection study) was designed to measure the effect of incorporating commuting in BARD's outbreak-detection algorithm.

    Results

    We found that failing to account for commuting in detection (when commuting is present in simulation) leads to a deterioration in BARD's detection and characterization performance that is both statistically and practically significant. We found that a simplified approach to accounting for commuting in detection--simplified to maintain tractability of inference--nearly fully restored both detection and characterization performance of BARD detector.

    Conclusion

    We conclude that it is important to account for commuting (and mobility in general) in BARD's simulation algorithm. Further, the proposed method for incorporating commuting in BARD's detection algorithm can successfully perform the necessary correction in the detection algorithm, while preserving BARD's practicality. In our future work, we intend to further study the problem of the trade-off between running time and accuracy of the computation in BARD's version that includes commuting and ultimately find the best such trade-off.

  • Subjects:
  • Source:
  • Pubmed ID:
    19891801
  • Pubmed Central ID:
    PMC2773922
  • Document Type:
  • Funding:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov