Why Is Particulate Matter Produced by Wildfires Toxic to Lung Macrophages?
-
2011/12/01
Details
-
Personal Author:
-
Description:Season and location have documented impacts on particulate matter (PM)-induced morbidity and mortality. Seasonal and regional influences on the physical and chemical properties of PM2.5 (also known as fine/ultrafine PM) contribute to differences in exposure burden and adverse respiratory health outcomes experienced in California's San Joaquin Valley (SJV), which ranks among the worst in the nation for PM pollution. Current regulations are driven by the association between mass concentrations and adverse health outcomes. However, this association is difficult to reproduce in toxicological studies and suggests a role for other parameters, such as chemical composition, involved in PM-induced adverse pulmonary health effects. Pulmonary toxicity of summer/winter and rural/urban SJV PM was evaluated given the unique geography, metereology and sources of the region. Healthy juvenile male mice inhaled summer/winter and urban/rural concentrated ambient PM (CAP) or ambient PM for 6 h/d for 10 d, and pulmonary inflammatory responses were measured 48 h postexposure. Exposure concentrations ranged from 10 to 20 microg/m3 for ambient air control mice and from 86 to 284 microg/m3. Mice exposed to rural but not urban CAP, displayed significant neutrophil influx that was more than 50-fold greater than control levels, which ranged from 21 to 60 neutrophils/ml for all experiments. Pulmonary neutrophilic inflammation was measured despite lower CAP concentrations in the rural compared to the urban location and in the absence of cytotoxicity, oxidative stress, or elevations in cytokine and chemokines expression. Further, the inflammatory responses induced by rural winter CAP were associated with the highest levels of organic carbon (OC) and nitrates (NO3 -). Evidence indicates that regional/seasonal influences on PM chemical composition rather than PM mass may be associated with increased PM-induced adverse health effects. [Description provided by NIOSH]
-
Subjects:
-
Keywords:
-
ISSN:0041-008X
-
Document Type:
-
Funding:
-
Genre:
-
Place as Subject:
-
CIO:
-
Topic:
-
Location:
-
Pages in Document:182-188
-
Volume:257
-
Issue:2
-
NIOSHTIC Number:nn:20062174
-
Citation:Toxicol Appl Pharmacol 2011 Dec; 257(2):182-188
-
Contact Point Address:Jerold A. Last, Center for Comparative Respiratory Biochemistry and Medicine, School of Medicine, University of California, 6519 Genome and Biomedical Sciences Facility, 451 Health Sciences Drive Davis, CA 95616, USA
-
Email:jalast@ucdavis.edu
-
Federal Fiscal Year:2012
-
NORA Priority Area:
-
Performing Organization:University of California - Davis
-
Peer Reviewed:True
-
Start Date:20010930
-
Source Full Name:Toxicology and Applied Pharmacology
-
End Date:20270929
-
Collection(s):
-
Main Document Checksum:urn:sha-512:ebcce6c3fa5ee12a1e2b237ccd6d6bc07c47c0258d79c9a44cd3a3819511870a7124347d37014a383d6ab6fcfcba2e60372630336c3576090f4f331fe474adc4
-
Download URL:
-
File Type:
ON THIS PAGE
CDC STACKS serves as an archival repository of CDC-published products including
scientific findings,
journal articles, guidelines, recommendations, or other public health information authored or
co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
You May Also Like