U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Overview of Mine Fire Detection

Public Domain


Details

  • Personal Author:
  • Description:
    Several experimental programs were conducted at the Pittsburgh Research Center to investigate the level of mine fire detection and alarm capability possible using state-of-the-art technology. These programs involved comparison of the response and alarm time of optical and ionization type smoke sensors to smoldering and flaming coal combustion in a smoke chamber. Coal combustion experiments conducted in the smoke chamber demonstrated that a CO concentration of 5 ppm above ambient corresponded to an optical density of 0.022m-1. For the four smoke sensors for which a continuous analog signal was available, a smoke sensor alarm was defined as the average background signal plus ten times the peak-to-peak noise. This alarm criterion resulted in the association of the alarm for three of the four sensors with a smoke optical density of in the smoke chamber studies were incorporated into large scale diesel fuel fire experiments conducted under normal ventilation conditions in the Safety Research Coal Mine (SRCM) at the Pittsburgh Research Center. These experiments showed that a diffusion mode smoke sensor alarmed earlier than a diffusion mode CO sensor; and, based upon the measurement of the optical transmission at the location of a pump mode ionization smoke sensor alarmed at an average smoke optical density of 0.021m-1 for the twelve experiments conducted under zero airflow conditions in the SRCM. It was determined that: (1) thermal sensors are inadequate at 30m from a 300kW fire; (2) a diffusion mode ionization smoke sensor can be more effective for mine fire detection than a diffusion mode CO sensor; (3) recommendations can be made for sensor spacing in a mine entry based upon the measured CO buoyancy induced spread rates along the mine roof and the time for a developing coal fire to ignite a conveyor belt. [Description provided by NIOSH]
  • Subjects:
  • Keywords:
  • Series:
  • Publisher:
  • Document Type:
  • Genre:
  • Place as Subject:
  • CIO:
  • Division:
  • Topic:
  • Location:
  • Pages in Document:
    489-499
  • NIOSHTIC Number:
    nn:20000100
  • Citation:
    Proceedings from the Second International Conference on Fire Research and Engineering. Bethesda, MD: Society of Fire Protection Engineers, 1998 Aug; :489-499
  • Federal Fiscal Year:
    1998
  • Peer Reviewed:
    False
  • Collection(s):
  • Main Document Checksum:
    urn:sha-512:19058a1c477c9854107bf12ca09fd2c0c0a5b4665cfc4f3d4539c24fca09e92ddd76020129b3ba265145cfb0cd693395cfa97e6f0d9aefc70f86f886ce3302ce
  • Download URL:
  • File Type:
    Filetype[PDF - 196.24 KB ]
ON THIS PAGE

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners.

As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.