Efficacy of an Ambulance Ventilation System in Reducing EMS Worker Exposure to Airborne Particles from a Patient Cough Aerosol Simulator
Public Domain
-
2019/12/01
-
Details
-
Personal Author:
-
Description:The protection of emergency medical service (EMS) workers from airborne disease transmission is important during routine transport of patients with infectious respiratory illnesses and would be critical during a pandemic of a disease such as influenza. However, few studies have examined the effectiveness of ambulance ventilation systems at reducing EMS worker exposure to airborne particles (aerosols). In our study, a cough aerosol simulator mimicking a coughing patient with an infectious respiratory illness was placed on a patient cot in an ambulance. The concentration and dispersion of cough aerosol particles were measured for 15 min at locations corresponding to likely positions of an EMS worker treating the patient. Experiments were performed with the patient cot at an angle of 0 degrees (horizontal), 30 degrees, and 60 degrees, and with the ambulance ventilation system set to 0, 5, and 12 air changes/hour (ACH). Our results showed that increasing the air change rate significantly reduced the airborne particle concentration (p < 0.001). Increasing the air change rate from 0 to 5 ACH reduced the mean aerosol concentration by 34% (SD = 19%) overall, while increasing it from 0 to 12 ACH reduced the concentration by 68% (SD = 9%). Changing the cot angle also affected the concentration (p < 0.001), but the effect was more modest, especially at 5 and 12 ACH. Contrary to our expectations, the aerosol concentrations at the different worker positions were not significantly different (p < 0.556). Flow visualization experiments showed that the ventilation system created a recirculation pattern which helped disperse the aerosol particles throughout the compartment, reducing the effectiveness of the system. Our findings indicate that the ambulance ventilation system reduced but did not eliminate worker exposure to infectious aerosol particles. Aerosol exposures were not significantly different at different locations within the compartment, including locations behind and beside the patient. Improved ventilation system designs with smoother and more unidirectional airflows could provide better worker protection. [Description provided by NIOSH]
-
Subjects:
-
Keywords:
-
ISSN:1545-9624
-
Document Type:
-
Genre:
-
Place as Subject:
-
CIO:
-
Division:
-
Topic:
-
Location:
-
Volume:16
-
Issue:12
-
NIOSHTIC Number:nn:20057709
-
Citation:J Occup Environ Hyg 2019 Dec; 16(12):804-816
-
Contact Point Address:William G. Lindsley, National Institute for Occupational Safety and Health, 1000 Frederick Lane, M/S 4020, Morgantown, WV 26508
-
Email:wlindsley@cdc.gov
-
Federal Fiscal Year:2020
-
NORA Priority Area:
-
Peer Reviewed:True
-
Source Full Name:Journal of Occupational and Environmental Hygiene
-
Collection(s):
-
Main Document Checksum:urn:sha-512:a2d0f3fd17abdb28e22af28859d7a93d6346efbf6b01b7fe0c6bb4a5b6fa5fc7b514006719ce6c718d55c25b0c522a3816c5687cfc571ba0a204b63a8cc186b6
-
Download URL:
-
File Type:
ON THIS PAGE
CDC STACKS serves as an archival repository of CDC-published products including
scientific findings,
journal articles, guidelines, recommendations, or other public health information authored or
co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
You May Also Like