mRNA and miRNA regulatory networks reflective of multi-walled carbon nanotube-induced lung inflammatory and fibrotic pathologies in mice
Public Domain
-
2015/04/01
-
Details
-
Personal Author:
-
Description:Multi-walled carbon nanotubes (MWCNT) are known for their transient inflammatory and progressive fibrotic pulmonary effects; however, the mechanisms underlying these pathologies are unknown. In this study, we used time-series microarray data of global lung mRNA and miRNA expression isolated from C57BL/6J mice exposed by pharyngeal aspiration to vehicle or 10, 20, 40, or 80 ug MWCNT at 1, 7, 28, or 56 days post-exposure to determine miRNA andmRNA regulatory networks that are potentially involved in MWCNT-induced inflammatory and fibrotic lung etiology. Using a non-negative matrix factorization method, we determined mRNAs and miRNAs with expression profiles associated with pathology patterns of MWCNT-induced inflammation (based upon bronchoalveolar lavage score) and fibrosis (based upon Sirius Red staining measured with quantitative morphometric analysis). Potential binding targets between pathology-related mRNAs and miRNAs were identified using Ingenuity Pathway Analysis and the miRTarBase, miRecords, and TargetScan databases. Using these experimentally validated and predicted binding targets, we were able to build molecular signaling networks that are potentially reflective of and play a role in MWCNT-induced lung inflammatory and fibrotic pathology. As understanding the regulatory networks between mRNAs and miRNAs in different disease states would be beneficial for understanding the complex mechanisms of pathogenesis, these identified genes and pathways may be useful for determining biomarkers of MWCNT-induced lung inflammation and fibrosis for early detection of disease. [Description provided by NIOSH]
-
Subjects:
-
Keywords:
-
ISSN:1096-6080
-
Document Type:
-
Genre:
-
Place as Subject:
-
CIO:
-
Division:
-
Topic:
-
Location:
-
Pages in Document:51-64
-
Volume:144
-
Issue:1
-
NIOSHTIC Number:nn:20045561
-
Citation:Toxicol Sci 2015 Apr; 144(1):51-64
-
Contact Point Address:Yong Qian, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505-2888
-
Email:yaq2@cdc.gov
-
Federal Fiscal Year:2015
-
NORA Priority Area:
-
Peer Reviewed:True
-
Source Full Name:Toxicological Sciences
-
Collection(s):
-
Main Document Checksum:urn:sha-512:c15c595a64de2bff9579e1c6ddc4ad07cee4427436a6c2f902d77c9d8021c813337fbc9e7568be30518ea200d83eae5cdb51d6ad93d8a6f403fa707f94ff55ad
-
Download URL:
-
File Type:
ON THIS PAGE
CDC STACKS serves as an archival repository of CDC-published products including
scientific findings,
journal articles, guidelines, recommendations, or other public health information authored or
co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
You May Also Like