U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Muscle morphology and performance prior to increased muscle mass for rats exposed to voluntary weight-lifting

Public Domain


Details

  • Personal Author:
  • Description:
    Resistance exercise induces strength gains prior to muscle hypertrophy. The mechanism for this early strength gain is not well understood. Multiple studies regarding animal models have reported increased muscle fiber number and altered muscle fiber size following voluntary resistance exercise. These investigations lacked direct performance measurements and analyzed muscles only after the onset of muscle hypertrophy. Consequently, whether these morphological changes contribute to early strength gains is unknown. Our group developed a voluntary weight-lifting model for rats which measures performance and induces increased muscle mass after two months of training. PURPOSE: To characterize muscle morphology and performance after one month of volitional training - a time period with the potential to precede muscle hypertrophy. METHODS: Rats (8 per group) were exposed to squat-type lifts of a weighted (70g or 700g) ring 5 days per week. Sections of soleus (SOL), medial gastrocnemius (MG), lateral gastrocnemius (LG), plantaris (PL), and tibialis anterior (TA) muscles were analyzed by stereology. Two-way ANOVA was used for statistical analysis; significance was set at p < 0.05. RESULTS: Despite the absence of muscle hypertrophy, 700g load training induced significant effects compared with cage control conditions. Fiber number per unit area increased by 16% for SOL muscles (212 +/- 7 vs. 183 +/- 9 fibers/mm2, p = 0.03) and 23% for TA muscles (349 +/- 11 vs. 283 +/- 19 fibers/mm2, p = 0.01). Fiber number per section, evaluated for SOL muscles, increased by 18% (2749 +/- 42 vs. 2324 +/- 121 fibers/section, p < 0.05). These results were accompanied by decreases in muscle fiber area of 15% for SOL muscles (4449 +/- 127 vs. 5234 +/- 277 um2, p = 0.03) and 21% for TA muscles (2787 +/- 91 vs. 3510 +/- 219 um2, p = 0.01) - a finding consistent with muscle fiber splitting. No chronic degeneration/regeneration was observed excluding such phenomenon as a requirement for the morphologic changes. Peak lifting forces increased by 21% (12.4 +/- 0.2 vs. 10.3 +/- 0.5 N, p = 0.01) - possibly an outcome of adaptive remodeling at the neural, capillary, or connective tissue level during fiber splitting. CONCLUSION: These findings indicate that modulation of muscle fiber number should be considered as a potential mechanism for early exercise-induced strength gains. [Description provided by NIOSH]
  • Subjects:
  • Keywords:
  • ISSN:
    0195-9131
  • Document Type:
  • Genre:
  • Place as Subject:
  • CIO:
  • Division:
  • Topic:
  • Location:
  • Pages in Document:
    354-355
  • Volume:
    46
  • Issue:
    5
  • NIOSHTIC Number:
    nn:20044928
  • Citation:
    Med Sci Sports Exerc 2014 May; 46(5)(Suppl 1):354-355
  • Federal Fiscal Year:
    2014
  • Peer Reviewed:
    False
  • Source Full Name:
    Medicine and Science in Sports and Exercise
  • Supplement:
    1
  • Collection(s):
  • Main Document Checksum:
    urn:sha-512:5b0a230d0223cbde9fe78392eabac7527de20a4ebce07efa5149d79d3fd89e1c5e75e388255b98d05c12eb515c46b27f96a314f72bce95e65ed13d517f26866c
  • Download URL:
  • File Type:
    Filetype[PDF - 408.33 KB ]
ON THIS PAGE

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners.

As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.