N-acetylcysteine reverses cardiac myocyte dysfunction in a rodent model of behavioral stress
Public Domain
-
2013/08/15
-
Details
-
Personal Author:
-
Description:Compelling clinical reports reveal that behavioral stress alone is sufficient to cause reversible myocardial dysfunction in selected individuals. We developed a rodent stress cardiomyopathy model by a combination of pre-natal and post-natal behavioral stresses (Stress). We previously reported a decrease in % FS by echo, both systolic and diastolic dysfunction by catheter-based hemodynamics, as well as attenuated hemodynamic and inotropic responses to the beta adrenergic agonist, isoproterenol (ISO) in Stress compared with matched Controls. We now report enhanced catecholamine responses to behavioral stress as evidenced by increased circulating plasma levels of norepinephrine (p<0.01) and epinephrine (p<0.01) in Stress vs Controls. Cardiac myocytes isolated from Stress also reveal evidence of oxidative stress as indicated by decreased ATP, increased GSSG and decreased GSH/GSSG ratio in the presence of increased glutathione peroxidase (GPX) and catalase activities (p<0.01, for each). We also report blunted inotropic and [Ca2+]i responses to extracellular Ca2+ ([Ca2+]out; p<0.05) as well as altered inotropic responses to the intracellular calcium regulator, caffeine (20mM; p<0.01). Treatment of cardiac myocytes with NAC (10-3 M) normalized calcium handling in response to ISO and [Ca2+]out and inotropic response to caffeine (p<0.01, for each). NAC also attenuated the blunted inotropic response to ISO and Ca2+ (p<0.01, for each). Surprisingly, NAC did not reverse the changes in GSH, GSSG or GSH/GSSG ratio. These data support a glutathione-independent salutary effect of NAC on intracellular calcium signaling in this rodent model of stress-induced cardiomyopathy. [Description provided by NIOSH]
-
Subjects:
-
Keywords:
-
ISSN:8750-7587
-
Document Type:
-
Genre:
-
Place as Subject:
-
CIO:
-
Division:
-
Topic:
-
Location:
-
Volume:115
-
Issue:4
-
NIOSHTIC Number:nn:20043022
-
Citation:J Appl Physiol 2013 Aug; 115(4):514-524
-
Contact Point Address:Mitchell S. Finkel, M.D., Professor and Associate Chairman, Department of Medicine, WVU Cardiology, Medical Center Drive, Morgantown, WV 26506-9157
-
Email:mfinkel@hsc.wvu.edu
-
CAS Registry Number:
-
Federal Fiscal Year:2013
-
NORA Priority Area:
-
Peer Reviewed:True
-
Source Full Name:Journal of Applied Physiology
-
Collection(s):
-
Main Document Checksum:urn:sha-512:99a5feff61b780821cf4e0ee485c6d098637b9adc666228f47b61ddd0fdeeb415a68c200085460831abe21343734ac777f06d8c6bb78776b4c4eedcc9e19368b
-
Download URL:
-
File Type:
ON THIS PAGE
CDC STACKS serves as an archival repository of CDC-published products including
scientific findings,
journal articles, guidelines, recommendations, or other public health information authored or
co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
You May Also Like