Mechanisms of crystalline silica-induced pulmonary toxicity revealed by global gene expression profiling
Public Domain
-
2011/12/01
Details
-
Personal Author:
-
Description:A proper understanding of the mechanisms underlying crystalline silica-induced pulmonary toxicity has implications in the management and potential prevention of the adverse health effects associated with silica exposure including silicosis, cancer and several auto-immune diseases. Human lung type II epithelial cells and rat lungs exposed to crystalline silica were employed as experimental models to determine global gene expression changes in order to understand the molecular mechanisms underlying silica-induced pulmonary toxicity. The differential gene expression profile induced by silica correlated with its toxicity in the A549 cells. The biological processes perturbed by silica exposure in the A549 cells and rat lungs, as identified by the bioinformatics analysis of the differentially expressed genes, demonstrated significant similarity. Functional categorization of the differentially expressed genes identified cancer, cellular movement, cellular growth and proliferation, cell death, inflammatory response, cell cycle, cellular development, and genetic disorder as top ranking biological functions perturbed by silica exposure in A549 cells and rat lungs. Results of our study, in addition to confirming several previously identified molecular targets and mechanisms involved in silica toxicity, identified novel molecular targets and mechanisms potentially involved in silica-induced pulmonary toxicity. Further investigations, including those focused on the novel molecular targets and mechanisms identified in the current study may result in better management and, possibly, reduction and/or prevention of the potential adverse health effects associated with crystalline silica exposure. [Description provided by NIOSH]
-
Subjects:
-
Keywords:
-
ISSN:0895-8378
-
Document Type:
-
Genre:
-
Place as Subject:
-
CIO:
-
Division:
-
Topic:
-
Location:
-
Volume:23
-
Issue:14
-
NIOSHTIC Number:nn:20040051
-
Citation:Inhal Toxicol 2011 Dec; 23(14):927-937
-
Contact Point Address:Pius Joseph, MS 3014, Toxicology and Molecular Biology Branch, National Institute for Occupational Safety and Health (NIOSH), 1095 Willowdale Road, Morgantown, WV 26505, USA
-
Email:pcj5@cdc.gov
-
CAS Registry Number:
-
Federal Fiscal Year:2012
-
NORA Priority Area:
-
Peer Reviewed:True
-
Source Full Name:Inhalation Toxicology
-
Collection(s):
-
Main Document Checksum:urn:sha-512:6f6553bdac3be33246edc3ff933f5ac260fe5ed6c4706a97cb47f358bc8a56f3332f58d4b8876b4e14c29af07e3671f0c380961c95a2ac1b080bb5cd18bc7d90
-
Download URL:
-
File Type:
ON THIS PAGE
CDC STACKS serves as an archival repository of CDC-published products including
scientific findings,
journal articles, guidelines, recommendations, or other public health information authored or
co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
You May Also Like