Trace-Level Beryllium Analysis in the Laboratory and in the Field: State of the Art, Challenges and Opportunities
Public Domain
-
2006/06/01
-
Details
-
Personal Author:
-
Description:Control of workplace exposure to beryllium is a growing issue in the United States and other nations. As the health risks associated with low-level exposure to beryllium are better understood, the need increases for improved analytical techniques both in the laboratory and in the field. These techniques also require a greater degree of standardization to permit reliable comparison of data obtained from different locations and at different times. Analysis of low-level beryllium samples, in the form of air filters or surface wipes, is frequently required for workplace monitoring or to provide data to support decision-making on implementation of exposure controls. In the United States and the United Kingdom, the current permissible exposure level is 2 microg m(-3) (air) and the United States Department of Energy has implemented an action level of 0.2 microg m(-3) (air) and 0.2 microg/100 cm(2) (surface). These low-level samples present a number of analytical challenges, including (1) a lack of suitable standard reference materials, (2) unknown robustness of sample preparation techniques, (3) interferences during analysis, (4) sensitivity (sufficiently low detection limits), (5) specificity (beryllium speciation) and (6) data comparability among laboratories. Additionally, there is a need for portable, real-time (or near real-time) equipment for beryllium air monitoring and surface wipe analysis that is both laboratory-validated and field-validated in a manner that would be accepted by national and/or international standards organizations. This paper provides a review of the current analytical requirements for trace-level beryllium analysis for worker protection and also addresses issues that may change those requirements. The current analytical state of the art and relevant challenges facing the analytical community will be presented, followed by suggested criteria for real-time monitoring equipment. Recognizing and addressing these challenges will present opportunities for laboratories, research and development organizations, instrument manufacturers and others. [Description provided by NIOSH]
-
Subjects:
-
Keywords:
-
ISSN:1464-0325
-
Document Type:
-
Genre:
-
Place as Subject:
-
CIO:
-
Division:
-
Topic:
-
Location:
-
Volume:8
-
Issue:6
-
NIOSHTIC Number:nn:20030447
-
Citation:J Environ Monit 2006 Jun; 8(6):605-611
-
Contact Point Address:Michael J. Brisson, Washington Savannah River Company, Savannah River Site, Aiken, SC 29808
-
Email:mike.brisson@srs.gov
-
CAS Registry Number:
-
Federal Fiscal Year:2006
-
Peer Reviewed:True
-
Source Full Name:Journal of Environmental Monitoring
-
Collection(s):
-
Main Document Checksum:urn:sha-512:2b323ce551206ac2edd3da82f0bedc4352aa43399ccff1276acf58b1cdf969a97738889d378237618ebef4fc0e6e76f186fcf13cf499f464c3961fe2871a711b
-
Download URL:
-
File Type:
ON THIS PAGE
CDC STACKS serves as an archival repository of CDC-published products including
scientific findings,
journal articles, guidelines, recommendations, or other public health information authored or
co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
You May Also Like