U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Interaction of Be with Carboxylates in Proteins and Influence of the Dielectric Environment

Public Domain


Details

  • Personal Author:
  • Description:
    To gain insight into the interaction of Be2+ ions with negatively charged protein residues, the free energy changes associated with the replacement of water molecules in the first hydration shell of with one and two formate anions were computed for the gas phase reactions using ab initio methods at the MP2 and DFT-B3LYP computational level. Both unidentate and bidentate modes of coordination of the carboxylate group with the Be2+ ion are considered. Continuum dielectric calculations were then performed to estimate the corresponding free energy changes in several environments of varying dielectric strength. Environments with dielectric constants of 2 and 4 to represent a protein interior, and 78, which corresponds to water, were used. It is found that the free energy changes for the substitution reactions decrease in magnitude with increasing dielectric strength, in agreement with similar results reported for Mg2+, Ca2+ and Zn2+ (Dudev, T.; Um C. J. Phys. Chem. B 2000, 104, 3692). However, unlike Mg2+, Ca2+ and Zn2+, the free energy change for the substitution reactions with Be2+ remain negative and indicate the reactions are still favorable in the high dielectric aqueous environment. It is also found that the unidentate mode of binding is favored over the bidentate mode, and this is attributed, in part, to introduction of hydrogen bonds between one carboxylate oxygen and a water molecule within the cluster when unidentate binding with Be2+ is involved. [Description provided by NIOSH]
  • Subjects:
  • Keywords:
  • ISSN:
    0065-7727
  • Document Type:
  • Genre:
  • Place as Subject:
  • CIO:
  • Division:
  • Topic:
  • Location:
  • Volume:
    229
  • NIOSHTIC Number:
    nn:20029726
  • Citation:
    Abstr Pap - Am Chem Soc 2006 Feb; 229(Pt 2):487-PHYS
  • CAS Registry Number:
  • Federal Fiscal Year:
    2006
  • Peer Reviewed:
    False
  • Part Number:
    2
  • Source Full Name:
    Abstracts of papers - American Chemical Society
  • Collection(s):
  • Main Document Checksum:
    urn:sha-512:c8e6249cd4dbaa279932b003dd4b24275709e55c3e6eb8cf2a8d8e7778cc4287c7943c290a64ef2c023e1dfaeb14f111271ea171cb447d6b7a58361b5ccdc0b4
  • Download URL:
  • File Type:
    Filetype[PDF - 253.83 KB ]
ON THIS PAGE

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners.

As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.