U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Air Filter Materials, Outdoor Ozone and Building-Related Symptoms in the BASE Study



Details

  • Personal Author:
  • Description:
    Used ventilation air filters have been shown to reduce indoor environmental quality and worker performance and increase symptoms, with effects stronger after reaction of filters with ozone. We analyzed data from the US EPA Building Assessment Survey and Evaluation (BASE) study to determine if ozone and specific filter media have interactive effects on building-related symptoms (BRS). We analyzed a subset of 34 buildings from the BASE study of 100 US office buildings to determine the separate and joint associations of filter medium [polyester/synthetic (PS) or fiberglass (FG)] and outdoor ozone concentration (above/below the median, 67.6 microg/m(3)) with BRS. Using logistic regression models and general estimating equations, we estimated odds ratios (ORs) and 95% confidence intervals for the association of filter medium, ozone, and filter medium x ozone with BRS. Relative to FG + low ozone, PS alone or high ozone alone, were each significantly (P < 0.05) associated only with fatigue/difficulty concentrating (ORs = 1.93 and 1.54, respectively). However, joint exposure to both PS + high ozone, relative to FG + low ozone, had significant associations with lower and upper respiratory, cough, eye, fatigue, and headache BRS (ORs ranged from 2.26 to 5.90). Joint ORs for PS + high ozone for lower and upper respiratory and headache BRS were much greater than multiplicative, with interaction P-values <0.10. Attributable risk proportion (ARP) estimates indicate that removing both risk factors might, given certain assumptions, reduce BRS by 26-62%. These findings suggest possible adverse health consequences from chemical interactions between outdoor ozone and PS filters in buildings. Results need confirmation before recommending changes in building operation. However, if additional research confirms causal relationships, ARP estimates indicate that appropriate filter selection may substantially reduce BRS in buildings, especially in high-ozone areas. PRACTICAL IMPLICATIONS: The results indicate that a better understanding of how filters interact with their environment is needed. While the mechanism is unknown and these findings need to be replicated, they indicate that the joint risk of BRS from polyester/synthetic filters and outdoor ozone above 67.6 microg/m(3) is much greater than the risk from each alone. These findings suggest potential reductions in BRS from appropriate selection of ventilation filter media or implementing strategies to reduce ozone entrained in building ventilation systems. If the relationships were found to be causal, filter replacement and ozone abatement should be undertaken. [Description provided by NIOSH]
  • Subjects:
  • Keywords:
  • ISSN:
    0905-6947
  • Document Type:
  • Funding:
  • Genre:
  • Place as Subject:
  • CIO:
  • Topic:
  • Location:
  • Pages in Document:
    144-155
  • Volume:
    18
  • Issue:
    2
  • NIOSHTIC Number:
    nn:20033886
  • Citation:
    Indoor Air 2008 Apr; 18(2):144-155
  • Contact Point Address:
    Michael G. Apte Indoor Environment Department Lawrence Berkeley National Laboratory 90R3058 1 Cyclotron Rd Berkeley, CA 94720
  • Email:
    mgapte@lbl.gov
  • CAS Registry Number:
  • Federal Fiscal Year:
    2008
  • NORA Priority Area:
  • Performing Organization:
    University of California, Lawrence Berkeley Lab
  • Peer Reviewed:
    True
  • Start Date:
    20040901
  • Source Full Name:
    Indoor Air
  • End Date:
    20080831
  • Collection(s):
  • Main Document Checksum:
    urn:sha-512:cbae1b6a464a0562aab7527eb174ebd0270285f978ad467c78e60802a19614d4ff462780581b92e4a06ef59415a05720cdb5a6406d2274184e5981e2b621e3aa
  • Download URL:
  • File Type:
    Filetype[PDF - 145.53 KB ]
ON THIS PAGE

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners.

As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.