Investigating Ozone-Induced Decomposition of Surface-Bound Permethrin for Conditions in Aircraft Cabins
Public Domain
-
2010/02/01
-
Details
-
Personal Author:
-
Description:The reaction of ozone with permethrin can potentially form phosgene. Published evidence on ozone levels and permethrin surface concentrations in aircraft cabins indicated that significant phosgene formation might occur in this setting. A derivatization technique was developed to detect phosgene with a lower limit of detection of 2 ppb. Chamber experiments were conducted with permethrin-coated materials (glass, carpet, seat fabric, and plastic) exposed to ozone under cabin-relevant conditions (150 ppb O-3, 4.5/h air exchange rate, < 1% relative humidity, 1700 ng/cm2 of permethrin). Phosgene was not detected in these experiments. Reaction of ozone with permethrin appears to be hindered by the electron-withdrawing chlorine atoms adjacent to the double bond in permethrin. Experimental results indicate that the upper limit on the reaction probability of ozone with surface-bound permethrin is similar to 10-7. Extrapolation by means of material-balance modeling indicates that the upper limit on the phosgene level in aircraft cabins resulting from this chemistry is similar to 1 mu g/m3 or similar to 0.3 ppb. It was thus determined that phosgene formation, if it occurs in aircraft cabins, is not likely to exceed relevant, health-based phosgene exposure guidelines. Practical Implications: Phosgene formation from ozone-initiated oxidation of permethrin in the aircraft cabin environment, if it occurs, is estimated to generate levels below the California Office of Environmental Health Hazard Assessment acute reference exposure level of 4 mu g/m3 or similar to 1 ppb. [Description provided by NIOSH]
-
Subjects:
-
Keywords:
-
ISSN:0905-6947
-
Document Type:
-
Genre:
-
Place as Subject:
-
CIO:
-
Division:
-
Topic:
-
Location:
-
Pages in Document:61-71
-
Volume:20
-
Issue:1
-
NIOSHTIC Number:nn:20036345
-
Citation:Indoor Air 2010 Feb; 20(1):61-71
-
Contact Point Address:W. W. Nazaroff Department of Civil and Environmental Engineering University of California, Berkeley 661 Davis Hall Berkeley, CA 94720-1710
-
Email:nazaroff@ce.berkeley.edu
-
CAS Registry Number:
-
Federal Fiscal Year:2010
-
Peer Reviewed:True
-
Source Full Name:Indoor Air
-
Collection(s):
-
Main Document Checksum:urn:sha-512:3e085761a49164e36758f2d626cdb27af1d64278f5b7aeae5dc4154f5e8ca1e35df91fde34126b4ceea3254eb266429379792c09050053260e257e88c8648956
-
Download URL:
-
File Type:
ON THIS PAGE
CDC STACKS serves as an archival repository of CDC-published products including
scientific findings,
journal articles, guidelines, recommendations, or other public health information authored or
co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
You May Also Like