Prediction of Dermal Absorption from Complex Chemical Mixtures: Incorporation of Vehicle Effects and Interactions into a QSPR Framework
-
2007/03/16
-
Details
-
Personal Author:
-
Description:Significant progress has been made on predicting dermal absorption/penetration of topically applied compounds by developing QSPR models based on linear free energy relations (LFER). However, all of these efforts have employed compounds applied to the skin in aqueous or single solvent systems, a dosing scenario that does not mimic occupational, environmental or pharmaceutical exposure. We have explored using hybrid QSPR equations describing individual compound penetration based on the molecular descriptors for the compound modified by a mixture factor (MF) which accounts for the physicochemical properties of the vehicle/mixture components. The MF is calculated based on percentage composition of the vehicle/mixture components and physical chemical properties selected using principal components analysis. This model has been applied to 12 different compounds in 24 mixtures for a total of 288 treatment combinations obtained from flow-through porcine skin diffusion cells and in an additional dataset of 10 of the same compounds in five mixtures for a total of 50 treatment combinations in the ex vivo isolated perfused porcine skin flap. The use of the MF in combination with a classic LFER based on penetrant properties significantly improved the ability to predict dermal absorption of compounds dosed in complex chemical mixtures. [Description provided by NIOSH]
-
Subjects:
-
Keywords:
-
ISSN:1062-936X
-
Document Type:
-
Funding:
-
Genre:
-
Place as Subject:
-
CIO:
-
Topic:
-
Location:
-
Pages in Document:31-44
-
Volume:18
-
Issue:1
-
NIOSHTIC Number:nn:20031884
-
Citation:SAR QSAR Environ Res 2007 Jan-Mar; 18(1-2):31-44
-
Contact Point Address:Jim Riviere, Center for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606
-
Email:Jim_Riviere@ncsu.edu
-
Federal Fiscal Year:2007
-
NORA Priority Area:
-
Performing Organization:North Carolina State University, Raleigh, North Carolina
-
Peer Reviewed:True
-
Start Date:20010601
-
Source Full Name:SAR and QSAR in Environmental Research
-
End Date:20100331
-
Collection(s):
-
Main Document Checksum:urn:sha-512:ce87d0d5db23c3cc3a8dec0e0e5945493010bb20ddf7f5690d6703145e7fa0f5339de51e7d739a0e82ff662c427f3e886005907c4549530d7395f68883781f4e
-
Download URL:
-
File Type:
ON THIS PAGE
CDC STACKS serves as an archival repository of CDC-published products including
scientific findings,
journal articles, guidelines, recommendations, or other public health information authored or
co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
You May Also Like