A Comprehensive Roof Bolter Drilling Control Algorithm for Enhancing Energy Efficiency and Reducing Respirable Dust
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A Comprehensive Roof Bolter Drilling Control Algorithm for Enhancing Energy Efficiency and Reducing Respirable Dust

Filetype[PDF-860.17 KB]


English

Details:

  • Alternative Title:
    Min Metall Explor
  • Personal Author:
  • Description:
    In underground coal mines, the drilling process in roof bolting operation could generate excessive amount of respirable coal and quartz dusts. Improper drilling control might also pose safety hazard and interrupt production. Therefore, an automated, high-efficiency drilling control system with safety features can be beneficial to the bolter personnel. In this research, a comprehensive drilling control algorithm has been developed to reduce the generation of respirable dust and to increase the drilling energy efficiency based on laboratory drilling test results and safety considerations. Specific energy is used to evaluate the energy efficiency. In addition, the ratio between specific energy and rock uniaxial compressive strength can be used as a basis for determining the rational drilling bite depth-typically a determined high one permissible by the driller power and drill steel. The test results show that to achieve and maintain a desired drilling bite depth for good drilling performance, a combination of relatively low rotational rate and a rationally high penetration is preferred. By monitoring the drilling rate, the system is able to evaluate the bit wear condition and improve drilling safety. In this paper, the developed drilling control algorithm for achieving a rational drilling bite depth is demonstrated. By adapting this drilling control algorithm, the drilling efficiency and bit condition can be monitored in real time, so the system can maintain a relatively high energy efficiency, generate less respirable dust, and avoid drilling failure.
  • Subjects:
  • Source:
  • Pubmed ID:
    37180556
  • Pubmed Central ID:
    PMC10174187
  • Document Type:
  • Funding:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov