Face Ventilation on a Bleederless Longwall Panel
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners. As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i

Face Ventilation on a Bleederless Longwall Panel

Filetype[PDF-871.70 KB]


English

Details:

  • Alternative Title:
    Min Metall Explor
  • Personal Author:
  • Description:
    A ventilation study using tracer gas was conducted at a western US coal mine. The objective of the study was to evaluate the movement of longwall face air exchanges between the face and worked-out area and to document the presence or absence of face airflow pathways between these locations. The mine operator uses a bleederless longwall ventilation system with a back return and a blowing mine ventilation system. The study was conducted on an active panel and included both underground and surface monitoring sites. The study used sulfur hexafluoride (SF|) released as a slug on the longwall face and in the front of the gob inby the face. The velocity of the tracer gas movement in the gob was 0.019 m/s (3.7 fpm). The rate of movement for the overall tracer gas slug averaged about 0.0091 m/s (1.8 fpm). A separate tracer gas test initiated with the release of SF| into the legs of the first shield showed the existence of more than one pathway of face air in the general direction from the headgate towards the tailgate corner. Maintaining adequate ventilation air on longwall faces is important for worker safety and for the dilution of methane emitted from the face and caved gob. A more detailed characterization of longwall system air and gas movement allows a mine to better assess its ventilation design for controlling gas on the face and in the gob.
  • Subjects:
  • Source:
  • Pubmed ID:
    35836583
  • Pubmed Central ID:
    PMC9278540
  • Document Type:
  • Funding:
  • Volume:
    36
  • Issue:
    3
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov