Hand breakaway strength model – Effects of glove use and handle shapes on a person’s hand strength to hold onto handles to prevent fall from elevation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Hand breakaway strength model – Effects of glove use and handle shapes on a person’s hand strength to hold onto handles to prevent fall from elevation

Filetype[PDF-900.25 KB]


  • English

  • Details:

    • Alternative Title:
      J Biomech
    • Description:
      This study developed biomechanical models for hand breakaway strength that account for not only grip force but also hand-handle frictional coupling in generation of breakaway strength. Specifically, models for predicting breakaway strength for two commonly-used handle shapes (circular and rectangular handles) and varying coefficients of friction (COF) between the hand and handle were proposed. The models predict that (i) breakaway strength increases with increasing COF and (ii) a circular handle with a 50.8 mm-diameter results in greater mean breakaway strength than a handle with a rectangular cross-section of 38.1 by 38.1 mm for COFs greater than 0.42. To test these model predictions, breakaway strengths of thirteen healthy young adults were measured for three frequently-encountered COF conditions (represented by three glove types of polyester (COF=0.32), bare hand (COF=0.50), and latex (COF=0.74) against an aluminum handle) and for the two handle shapes. Consistent with the model predictions, mean breakaway strength increased with increasing COF and was greater for the circular than rectangular handle for COFs of 0.50 and 0.74. Examination of breakaway strength normalized to body weight reveals that modification of COF and handle shapes could influence whether one can hold his/her body using the hands or not (thus must fall), highlighting the importance of considering these parameters for fall prevention. The biomechanical models developed herein have the potential to be applied to general handle shapes and COF conditions. These models can be used to optimize handle design to maximize breakaway strength and minimize injuries due to falls from ladders or scaffolds.
    • Pubmed ID:
      22281405
    • Pubmed Central ID:
      PMC8887815
    • Document Type:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov