CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i
Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by MOF derived porous carbon
-
10 01 2019
-
-
Source: Biosens Bioelectron. 142:111495
Details:
-
Alternative Title:Biosens Bioelectron
-
Personal Author:
-
Description:Due to robustness, easy large-scale preparation and low cost, nanomaterials with enzyme-like characteristics (defined as 'nanozymes') are attracting increasing interest for various applications. However, most of currently developed nanozymes show much lower activity in comparison with natural enzymes, and the deficiency greatly hinders their use in sensing and biomedicine. Single-atom catalysts (SACs) offer the unique feature of maximum atomic utilization, providing a potential pathway to improve the catalytic activity of nanozymes. Herein, we propose a Fe-N-C single-atom nanozyme (SAN) that exhibits unprecedented peroxidase-mimicking activity. The SAN consists of atomically dispersed Fe─N| moieties hosted by metal-organic frameworks (MOF) derived porous carbon. Thanks to the 100% single-atom active Fe dispersion and the large surface area of the porous support, the Fe-N-C SAN provided a specific activity of 57.76 U mg|, which was almost at the same level as natural horseradish peroxidase (HRP). Attractively, the SAN presented much better storage stability and robustness against harsh environments. As a proof-of-concept application, highly sensitive biosensing of butyrylcholinesterase (BChE) activity using the Fe-N-C SAN as a substitute for natural HRP was further verified.
-
Subjects:
-
Source:
-
Pubmed ID:31310943
-
Pubmed Central ID:PMC8672370
-
Document Type:
-
Funding:
-
Volume:142
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: