Structural design considerations for deep mine shafts : analysis of circular, rectangular, and elliptical openings
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Structural design considerations for deep mine shafts : analysis of circular, rectangular, and elliptical openings

Filetype[PDF-21.59 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Personal Author:
  • Corporate Authors:
  • Description:
    "The Bureau of Mines has investigated the structural aspects of shafts and support systems using the finite-element technique. In situ field measurements in deep, vein-type metal mines show that rock stresses are often higher in the horizontal direction than the vertical, and unequal in the horizontal plane. These data and laboratory and field-determined physical properties were used as input to analytical studies. Various design and construction parameters were investigated to determine the effect on shaft stability. Rectangular shafts were studied in detail to determine the effects of applied stress ratio, shaft orientation and dimension, influence of interbedded quartzite and argillite, and rock fracturing. Various support systems were analyzed, including concrete lining, timber, and steel sets. Circular configurations were investigated to evaluate yield zones and liner thickness. Elliptical shafts and time effects were briefly evaluated to illustrate shape and time effects and demonstrate the methodology. It is shown that the magnitude, direction, and ratio of applied stress and rock mass anisotropy are keys to determining shaft stability. A realistic conceptual framework was developed with which to examine the rock and support interaction in deep mine shafts. Structural analysis techniques overcome some of the historical difficulties with shaft design by defining the field data requirements and structural sensitivity of various design and construction parameters." - NIOSHTIC-2

    NIOSHTIC no. 10004656

  • Subjects:
  • Series:
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at