A Bayesian analysis of the 2009 decline in tuberculosis morbidity in the United States
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Add terms to the query box

Query box

Help
Clear All
i

A Bayesian analysis of the 2009 decline in tuberculosis morbidity in the United States

Filetype[PDF-767.73 KB]


  • English

  • Details:

    • Alternative Title:
      Stat Med
    • Description:
      Although annual data are commonly used to model linear trends and changes in trends of disease incidence, monthly data could provide additional resolution for statistical inferences. Because monthly data may exhibit seasonal patterns, we need to consider seasonally adjusted models, which can be theoretically complex and computationally intensive. We propose a combination of methods to reduce the complexity of modeling seasonal data and to provide estimates for a change in trend when the timing and magnitude of the change are unknown. To assess potential changes in trend, we first used autoregressive integrated moving average (ARIMA) models to analyze the residuals and forecast errors, followed by multiple ARIMA intervention models to estimate the timing and magnitude of the change. Because the variable corresponding to time of change is not a statistical parameter, its confidence bounds cannot be estimated by intervention models. To model timing of change and its credible interval, we developed a Bayesian technique. We avoided the need for computationally intensive simulations by deriving a closed form for the posterior distribution of the time of change. Using a combination of ARIMA and Bayesian methods, we estimated the timing and magnitude of change in trend for tuberculosis cases in the United States. Published 2012. This article is a US Government work and is in the public domain in the USA.
    • Pubmed ID:
      22415632
    • Pubmed Central ID:
      PMC8116880
    • Document Type:
    • Place as Subject:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov