Predicting flow characteristics of a lixiviant in a fractured crystalline rock mass
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Predicting flow characteristics of a lixiviant in a fractured crystalline rock mass

Filetype[PDF-3.19 MB]



  • Personal Author:
  • Corporate Authors:
  • Description:
    "In situ metals research to characterize the hydrology of a fractured crystalline rock mass in underground mine stopes is discussed. The objective of this study was to find the potential direction, velocity, and concentrations of a lixiviant plume, should leaching solvents (lixiviants) escape from a test stope. The sudy was conducted by the U.S. Bureau of Mines at the Colorado School of Mines Experimental Mine in Idaho Springs, CO. Since this was a method evaluation site, the lixiviant was simulated using water and acceptable tracers. The site is located in moderately fractured Precambrian migmatite-biotite gneisses of the Idaho Springs Formation. The data required for the characterization were obtained from geologic maps and reports, core logs, and air and water permeability test. The acquired data were analyzed and applied to a computer model that calculated the characteristics of a lixiviant plume originating at the stope. A sensitivity analysis showed that dispersivity, ground water velocity, fracture porosity, and fracture spacing had notable effects on the concentration of the plume. Assuming a saturated rock mass, the lixiviant plume would disperse to undetectable levels in a very short time because of a high fracture density at the mine site." - NIOSHTIC-2

    NIOSHTIC no. 10003891

  • Subjects:
  • Series:
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at