Genome-wide transcriptome architecture in a mouse model of Gulf War Illness
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Genome-wide transcriptome architecture in a mouse model of Gulf War Illness

Filetype[PDF-3.20 MB]


  • English

  • Details:

    • Alternative Title:
      Brain Behav Immun
    • Description:
      Gulf War Illness (GWI) is thought to be a chronic neuroimmune disorder caused by in-theater exposure during the 1990-1991 Gulf War. There is a consensus that the illness is caused by exposure to insecticides and nerve agent toxicants. However, the heterogeneity in both development of disease and clinical outcomes strongly suggests a genetic contribution. Here, we modeled GWI in 30 BXD recombinant inbred mouse strains with a combined treatment of corticosterone (CORT) and diisopropyl fluorophosphate (DFP). We quantified transcriptomes from 409 prefrontal cortex samples. Compared to the untreated and DFP treated controls, the combined treatment significantly activated pathways such as cytokine-cytokine receptor interaction and TNF signaling pathway. Protein-protein interaction analysis defined 6 subnetworks for CORT + DFP, with the key regulators being Cxcl1, Il6, Ccnb1, Tnf, Agt, and Itgam. We also identified 21 differentially expressed genes having significant QTLs related to CORT + DFP, but without evidence for untreated and DFP treated controls, suggesting regions of the genome specifically involved in the response to CORT + DFP. We identified Adamts9 as a potential contributor to response to CORT + DFP and found links to symptoms of GWI. Furthermore, we observed a significant effect of CORT + DFP treatment on the relative proportion of myelinating oligodendrocytes, with a QTL on Chromosome 5. We highlight three candidates, Magi2, Sema3c, and Gnai1, based on their high expression in the brain and oligodendrocyte. In summary, our results show significant genetic effects of the CORT + DFP treatment, which mirrors gene and protein expression changes seen in GWI sufferers, providing insight into the disease and a testbed for future interventions.
    • Pubmed ID:
      32574576
    • Pubmed Central ID:
      PMC7787136
    • Document Type:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov