Clinicopathologic and Molecular Features of Intracranial Desmoplastic Small Round Cell Tumors

Julieann C. Lee¹, Javier E. Villanueva-Meyer², Sean P. Ferris¹, Elaine M. Cham³, Jacob Zucker⁴, Tabitha Cooney⁵, Ahmed Gilani⁶, Bette K. Kleinschmidt-DeMasters⁶, Dimitri Trembath⁷, Manuela Mafra⁸, Jason Chiang⁹, David W. Ellison⁹, Soo-Jin Cho¹, Andrew E. Horvai¹, Jessica Van Ziffle¹,¹⁰, Courtney Onodera¹,¹⁰, Patrick Devine¹,¹⁰, James P. Grenert¹,¹⁰, Carmen M.A. de Voijs¹¹, W.T. Marja van Blokland¹¹, Wendy W. J. de Leng¹¹, Marieke J. Ploegmakers¹², Uta Flucke¹³, Melike Pekmezci¹, Andrew W. Bollen¹, Tarik Tihan¹, Christian Koelsche¹⁴, Andreas von Deimling¹⁵,¹⁶, Pieter Wesseling¹⁷, David A. Solomon¹,¹⁰, Arie Perry¹

¹Department of Pathology, University of California, San Francisco, CA ²Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA ³Department of Pathology, UCSF Benioff Children’s Hospital Oakland, Oakland, CA ⁴Department of Hematology/Oncology, Renown Children’s Hospital, Reno, NV ⁵Department of Hematology/Oncology, UCSF Benioff Children’s Hospital Oakland, Oakland, CA ⁶Department of Pathology, University of Colorado, Denver, CO ⁷Department of Pathology, The University of North Carolina at Chapel Hill, Chapel Hill, NC ⁸Department of Pathology, The Portuguese Institute of Oncology, Lisbon, Portugal ⁹Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN ¹⁰Clinical Cancer Genomics Laboratory, University of California, San Francisco, CA ¹¹Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands ¹²Department of Radiology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands ¹³Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands ¹⁴Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany ¹⁵Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany ¹⁶Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany ¹⁷Princess Máxima Center for Pediatric Oncology, Utrecht, and Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands

Abstract

To whom correspondence should be addressed: Dr. Arie Perry, MD, Division of Neuropathology, University of California, San Francisco, 505 Parnassus Ave, Room M-551, Box 0102, San Francisco, CA 94143, Phone: 415-476-5236, Fax: 415-476-7963, arie.perry@ucsf.edu.

Data Availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Compliance with ethical standards The authors declare no conflict of interest. All procedures performed in studies involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Presented in abstract format at the United States and Canadian Academy of Pathology meeting in National Harbor, Maryland, March 16–21, 2019.
Desmoplastic small round cell tumors (DSRCTs) are highly aggressive sarcomas that most commonly occur intra-abdominally, and are defined by *EWSR1-WT1* gene fusion. Intracranial DSRCTs are exceptionally rare with only seven previously reported fusion-positive cases. Herein, we evaluate the clinical, morphologic, immunohistochemical, and molecular features of five additional examples. All patients were male (age range 6–25 years; median 11 years), with four tumors located supratentorially and one within the posterior fossa. The histologic features were highly variable including small cell, embryonal, clear cell, rhabdoid, anaplastic, and glioma-like appearances. A prominent desmoplastic stroma was seen in only two cases. The mitotic index ranged from <1 to 12/10 HPF (median 5). While all tumors showed strong desmin positivity, epithelial markers such as EMA, CAM 5.2, and other keratins were strongly positive in only one, focally positive in two, and negative in two cases. *EWSR1-WT1* gene fusion was present in all cases, with accompanying mutations in the *TERT* promoter or *STAG2* gene in individual cases. Given the significant histologic diversity, in the absence of genetic evaluation these cases could easily be misinterpreted as other entities. Desmin immunostaining is a useful initial screening method for consideration of a DSRCT diagnosis, prompting confirmatory molecular testing. Demonstrating the presence of an *EWSR1-WT1* fusion provides a definitive diagnosis of DSRCT. Genome-wide methylation profiles of intracranial DSRCTs matched those of extracranial DSRCTs. Thus, despite the occasionally unusual histologic features and immunoprofile, intracranial DSRCTs likely represent a similar, if not the same, entity as their soft tissue counterpart based on the shared fusion and methylation profiles.

Keywords

desmoplastic small round cell tumor; intracranial; *EWSR1-WT1* fusion; desmoplastic stroma; desmin positivity; polyphenotypic

Introduction

Desmoplastic small round cell tumors (DSRCTs) are malignant mesenchymal neoplasms of uncertain histogenesis that most often occur intra-abdominally, with a male to female ratio of approximately 4:1. They are defined by *EWSR1-WT1* gene fusion and display a polyphenotypic immunoprofile with co-expression of epithelial (EMA, cytokeratins), mesenchymal (desmin), and neuronal markers (NSE, synaptophysin) (6, 20, 21, 22, 23, 25, 35, 36, 42, 56). Prior synonyms have emphasized the tumor’s unique multilineage immunoprofile and predilection to occur within the abdomen, including desmoplastic small cell tumor with divergent differentiation, polyphenotypic small round cell tumor, and intra-abdominal desmoplastic round cell tumor (6, 25).

The characteristic histologic features of DSRCTs include clusters of small uniform oval cells with hyperchromatic nuclei and scant cytoplasm embedded within a prominent desmoplastic stroma. However, non-classic patterns exist in approximately one third of cases (41). Alternative appearances include epithelioid, spindled, or signet ring-like cells, cellular pleomorphism with marked nuclear atypia, tight paraganglioma-like “Zellballen” nests, Homer Wright-like rosettes, gland formation, papillary growth, or solid sheet-like growth (2, 3, 6, 41, 14). Prominent desmoplasia may be absent in rare examples (3, 41).
DSRCTs are less frequently reported in other locations such as the pleura (31), lung (49), parotid gland (26), kidney (12), pancreas (43), paratesticular region (2, 44), or bone and soft tissues of the extremities (1, 2, 55). Seven intracranial DSRCT cases with confirmation of EWSR1-WT1 fusion have been reported previously (2, 9, 40, 50, 52). Two other cases reported based on characteristic histology and immunostaining alone (54), or in combination with EWSR1 rearrangement by FISH (2) may also represent the same entity. Clinical prognosis for patients with abdominal DSRCT has been poor, with a median overall survival of approximately 26 months and 5-year overall survival of 18% (18, 29, 48). Multimodality therapy options utilizing modern surgical and chemotherapy delivery techniques continue to be explored (18, 27).

Materials and Methods

Five cases of intracranial DSRCT, each from a different institution, were evaluated for clinical, morphologic, immunohistochemical, and molecular features. Study inclusion criteria required demonstration of EWSR1-WT1 fusion either by next-generation sequencing of genomic DNA, or RT-PCR detection of the mRNA fusion transcript. Cases 1–4 had sufficient tumor tissue for genetic evaluation on the UCSF500 Cancer Panel, which assesses approximately 500 cancer-associated genes for mutations, copy number alterations, and structural variants including gene fusions (17, 32, 37, and Supplementary Table 1). Paired tumor-normal sequencing was performed for patient #1 using a buccal swab sample, whereas analysis of tumor tissue only was conducted for patients #2–4. Genomic DNA was extracted from formalin-fixed, paraffin-embedded tumor tissue using the QIAamp DNA FFPE Tissue Kit (Qiagen #56404). Methylation profiling of all five intracranial DSRCT cases was assessed at the University Medical Center Utrecht in The Netherlands using the Illumina EPIC (850k) array and was analyzed by the DKFZ sarcoma classifier for generation of calibrated scores. A detailed list of the entities included in the sarcoma classifier reference cohort is available online (molecularneuropathology.org). For visualization of intracranial DSRCT DNA-methylation data as compared to abdominal/soft tissue DSRCTs and other relevant tumor entities, t-distributed stochastic neighbor embedding (t-SNE) analysis was performed. For case #5, there was only sufficient material for genetic evaluation by RT-PCR and methylation profiling. Copy number changes were evaluated based on results from the UCSF500 Cancer Panel.

Results

The clinical features of the five cases of intracranial DSRCTs are summarized in Table 1. All patients were male (age range 6–25 years; median 11 years). Presenting symptoms were variable and included seizures, headaches, numbness, and weakness. Four tumors were located supratentorially, while one was located within the posterior fossa. Magnetic resonance imaging features ranged from variably enhancing heterogeneous masses with a small cystic component, to multilocular predominantly cystic masses with enhancing solid nodules (Table 1 and Figure 1). All tumors were predominantly parenchymal, with extension to the leptomeninges without overlying dural changes noted in four cases (case #1, #3, #4, and #5). Susceptibility consistent with microhemorrhages was present in case #1, #3, and #4. Case #3 demonstrated reduced diffusion peripherally. For patients #1 and #4 whole body

Brain Pathol. Author manuscript; available in PMC 2021 March 01.
PET-CT or PET-MRI results were available, which showed no evidence of extracranial malignancy. Patients #4 and #5 underwent gross total resection followed by chemotherapy and radiation, with no evidence of residual disease at 13 months and 8 years after diagnosis respectively. Patient #4 received 6 cycles of vincristine and cyclophosphamide with 55.8 Gy of radiation therapy delivered in 31 fractions (Table 1). Patient #5 received chemotherapy according to the Memorial Sloan-Kettering Cancer Center P6 protocol (34), and 55.8 Gy of radiation therapy with a daily fraction of 1.8 Gy. One patient showed no evidence of disease 16 months after gross total resection and 6 weeks of radiation therapy only. One patient died within one month of surgery, of unspecified causes.

In all five cases the diagnosis of intracranial DSRCT was made after genetic evaluation demonstrated an EWSR1-WT1 fusion. Initial diagnostic impressions included anaplastic medulloblastoma, astroblastoma-like neoplasm, low-grade tumor with glioneuronal features, malignant tumor NOS, and small round blue cell tumor (Table 2 and Figure 2). Despite the entity’s name, a prominent desmoplastic stroma was present in only two cases (case #1 and #4), with the remaining three cases representing the less common “non-desmoplastic variant” or solid-pattern (3, 41). The growth pattern within the brain was either solid, or mixed solid and infiltrative with entrapped axons at the periphery. Cytologic features included cells with hyperchromatic angulated nuclei and indistinctive cell boundaries, clear cells with small bland oval nuclei, small epithelioid cells with amphophilic cytoplasm and oval nuclei, loose areas of low cellularity with spindled tapering bipolar cells, cells with large hyperchromatic pleomorphic nuclei, and cells with small hyperchromatic oval to irregular nuclei within a fibrillar background.

In case #1 (Table 2 and Figure 2) the majority of the tumor appeared glial; there were hyalinized vessels and structures resembling astroblastic pseudorosettes with broad perivascular processes. GFAP staining for this case showed patchy positivity. Other regions contained small round cells embedded in a desmoplastic stroma, indicating a more classical DSRCT appearance at least focally.

Case #3 was located in the posterior fossa, and was diagnostically challenging as the histologic and immunohistochemical features had a remarkable resemblance to an anaplastic medulloblastoma. The tumor cells had large pleomorphic nuclei with abundant mitoses, and features often seen in anaplastic medulloblastomas such as cell-wrapping, apoptotic lakes, and nuclear molding were present (Table 2 and Figure 2). Immunohistochemical studies for medulloblastoma subtyping were performed, which showed strong and diffuse YAP1 staining, moderate GAB1 positivity, cytoplasmic beta-catenin staining, and p53 positivity in 60% of tumor nuclei. A diagnosis of “anaplastic medulloblastoma, SHH-activated and likely TP53-mutant, WHO grade IV” was favored before the case underwent genetic characterization. Rhabdoid features were present focally, a finding that is not uncommon in DSRCTs (21, 41).

Case #2 contained solid sheets of tumor cells with hyperchromatic nuclei, only focal desmoplasia, a high mitotic index, and a malignant appearance. YAP1 immunohistochemistry was also performed in this case, and showed strong diffuse positivity. In contrast, case #4 appeared low-grade (i.e., cytologically bland with low proliferative
activity) with prominent areas of desmoplasia. Case #5 displayed the typical “small round blue cell” appearance; however, this case contained only focal areas of desmoplasia.

The mitotic index ranged from <1 to 12/10 HPF (median 5), and the Ki-67 labeling index ranged from 2% to 80%. The myogenic differentiation marker desmin was strongly positive in all 5 cases, with the globular staining pattern often described for DSRCTs (25, 42) present in case #3. While most cases had strong and diffuse desmin staining, case #1 had strong patchy desmin staining. Staining for the epithelial markers EMA and CAM 5.2 showed strong positivity in only one case (case #3), focal positivity in two cases, and was negative in two cases (Table 2). Staining for neuronal markers showed patchy or focal synaptophysin in 4/5 cases, patchy NeuN in 3/3 cases, and strong CD56 staining in 3/3 cases. GFAP immunostaining performed in four cases (case #1, 3, 4, and 5) showed patchy or focal positivity.

EWSR1-WT1 fusion was detected by targeted next-generation DNA sequencing (4/5) or RT-PCR (1/5) (Table 3). For all cases evaluated by the UCSF500 Cancer panel (case #1, 2, 3, 4), the fusion junction occurred between intron 8–9 of the EWSR1 gene (NM_013986) on chromosome 22q12 and intron 7–8 of the WT1 gene (NM_024426) on chromosome 11p33. This fusion is predicted to result in an in-frame fusion protein where the N-terminal portion is composed of exons 1–8 (codons 1–270) of EWSR1 and the C-terminal portion is composed of exons 8–10 (codons 418–517) of WT1. This fusion is identical to the most common EWSR1-WT1 fusion found in extracranial DSRCTs (4, 22, 24, 35, 39), and only antibodies against the C-terminus of WT1 would be expected to detect WT1 protein expression (39, 56). RT-PCR evaluation of case #5 detected an EWSR1-WT1 mRNA fusion transcript.

Accompanying pathogenic mutations included a TERT promoter hotspot mutation in case #3, and a subclonal STAG2 splice site mutation in case #4 predicted to disrupt gene function (Table 3). Though case #3 and case #4 both showed staining for p53 in greater than 60% of tumor nuclei, this did not correlate with the presence of an identifiable TP53 mutation in either case. Case #3 showed multiple chromosomal copy number alterations, while the remaining cases evaluated by the UCSF500 Cancer Panel demonstrated two or fewer chromosomal copy number changes.

Using the DKFZ sarcoma classifier and reference cohort, the methylation profiles of intracranial DSRCTs matched the profiles of extracranial DSRCTs with a calibrated score of 0.99 for all cases. The intracranial and extracranial DSRCT methylation profiles also clustered together by t-distributed stochastic neighbor embedding (t-SNE) analysis (Figure 3).

Discussion

Though DSRCT morphology is characteristically that of a “small round blue cell tumor” with a desmoplastic stroma, non-classic morphologies are known to exist in a subset of cases (2, 3, 6, 14, 41). Therefore, it is important to consider DSRCT in the differential diagnosis not only for “small round blue cell tumors” of the CNS (15, 40), but also for CNS cases with
other morphologies, especially those with a polyphenotypic immunoprofile. We encountered one case in particular that remarkably resembled an anaplastic medulloblastoma, which lacked the desmoplastic stroma usually seen in DSRCT cases (Figure 2, Case #3). This case also illustrated how immunostaining results typically utilized for medulloblastoma subtyping can be misleading if a definitive medulloblastoma diagnosis is not established. This case was positive for YAP1 and GAB1, with p53 positivity in 60% of tumor nuclei, mimicking an anaplastic medulloblastoma, SHH-activated and likely TP53 mutant.

NSE is the neuronal marker typically used during diagnostic evaluation of extracranial DSRCTs, with synaptophysin being less sensitive. Markers such as NSE and CD56 are less often utilized within the CNS due to their lack of specificity. Nevertheless, patchy NeuN and synaptophysin positivity was often found in our intracranial DSRCTs. Polyphenotypic expression is an inherent quality of DSRCTs encountered within the abdomen and soft tissues, with expression of EMA in 94% of 79 cases (23, 42), and expression of CAM 5.2 or AE1/AE2 in 88% of 149 cases (23, 36, 42). Cytokeratin staining in extracranial DSRCT cases usually shows diffuse cytoplasmic staining, occasional dot-like staining, and is rarely only focally positive (36, 42). Of the five intracranial DSRCTs within our series, only one was strongly positive for an epithelial lineage marker. If we also consider the previously published intracranial DSCRCTs with confirmed fusion, only six of 12 (50%) have shown strong epithelial antigen positivity. While not all abdominal DSRCTs express epithelial antigens (53), the absence of epithelial antigen positivity is an infrequent finding.

Due to some of the atypical morphologic patterns encountered within this series of intracranial DSRCTs, the suggestion of decreased immunopositivity for epithelial lineage marker expression as compared to intra-abdominal cases, and the unique location of our intracranial EWSR1-WT1 fusion tumors, we considered the possibility that these cases may represent a distinct entity. Despite sharing the same EWSR1-WT1 fusion as abdominal DSRCT cases, we postulated that the fundamental biology of intracranial cases could be unique, and thus account for the observed phenotypic differences.

As the methylation profiles of extracranial DSRCTs have been established (33), we compared the methylation profiles of intracranial DSRCT cases to those of extracranial cases, to serve as an additional assessment of similarities in tumor biology. The methylation profiles of intracranial and extracranial DSRCTs were almost identical, with calibrated scores of 0.99. In contrast to our initial hypothesis that these could be distinctive entities with identical genetics and differences in other aspects of their pathology, the shared epigenetic methylation profiles supports that these two groups represent a similar, if not the same, entity at both sites.

As is the case for many neoplasms, the cell of origin for intracranial DSRCTs is not well established. However, one could speculate that a mesenchymal progenitor cell associated with the meninges, the vasculature, or possibly located within the brain parenchyma due to abnormal developmental differentiation or migration, could acquire genetic and epigenetic alterations resulting in sarcoma tumorigenesis. For intra-abdominal DSRCTs a mesothelial or submesothelial origin has been considered (21, 25); which is supported to some degree by expression of desmin and WT1 in both DSRCT and mesothelial cells, and by the
predilection for DSRCT formation within mesothelial-lined cavities. However, DSRCTs also occur in extra-abdominal locations which are not associated with a mesothelial lining, do not show ultrastructural evidence of mesothelial differentiation, and are generally regarded to be of uncertain histogenesis (2, 25, 42, 56).

It may be that the actual number of intracranial DSRCT cases is greater than currently recognized. Due to the variety of morphologic features and radiologic appearances, with both supratentorial and infratentorial locations possible, many cases could go unrecognized. In the absence of genetic evaluation, these cases could easily be misinterpreted as other entities. Since most DSRCTs are strongly desmin positive, desmin immunostaining could be used as an initial screening method to consider the diagnosis.

Desmin positivity, in the context of a polyphenotypic immunoprofile and particularly if there is a globular staining pattern (25, 42), is highly suggestive of a DSRCT diagnosis. However, a polyphenotypic immunoprofile with desmin positivity is not specific to DSRCT, and can also be encountered in angiomatous fibrous histiocytoma, intracranial myxoid mesenchymal tumors, and sarcomas with EWSR1-PATZ1 gene fusion (7, 11, 19, 30). We encountered two such cases while establishing our DSRCT study cohort, which were desmin positive but demonstrated an EWSR1-ATF1 gene fusion on molecular evaluation, one of these cases also had a prominent desmoplastic stroma. Desmin positivity could be very useful as an initial screening test, which would then initiate additional confirmatory molecular testing to evaluate for the presence of an EWSR1-WTI gene fusion, a matching methylation profile, or surrogate indication of the fusion by WT1 immunostaining.

Utilizing a WT1 antibody that specifically recognizes the C-terminus of WT1 detects nuclear positivity in many cases of DSRCT with confirmed EWSR1-WTI gene fusion (39, 56), with sensitivity ranging from 70–100% depending on the study (56, 8, 28). Specificity for DSRCT was also high when compared to peripherally located neoplasms including rhabdomyosarcoma, Ewing sarcoma, neuroblastoma, and rhabdoid tumors of the kidney, with the exception being that nephroblastomas also show nuclear WT1 positivity (8, 28).

However, caution must be utilized in relying on immunohistochemistry alone, as it is important to recognize that WT1 antibodies directed against the N-terminus of WT1 will not recognized the nuclear fusion protein generated by transcription/translation of an EWSR1-WTI gene fusion containing the C-terminal exons of WT1 (39, 56). A WT1 antibody appropriately targeted against the C-terminus is a less expensive and rapid analysis option for immunohistochemical indication of EWSR1-WTI fusion in medical centers without molecular testing techniques.

Demonstrating the presence of an EWSR1-WTI fusion provides a definitive diagnosis of DSRCT. An important caveat is that establishing the presence of an EWSR1 gene rearrangement by break-apart FISH probes alone is insufficient, as other EWSR1 fusion tumors can closely resemble a DSRCT by both histologic features and immunostaining. This is especially relevant for angiomatous fibrous histiocytoma, and for intracranial myxoid mesenchymal tumors with EWSR1-CREB family gene fusions (7, 19, 30). As previously mentioned, these tumors can have a desmoplastic stroma and show polyphenotypic differentiation with desmin positivity, and would also be positive for EWSR1 gene.
In the intracranial setting, the histologic features of DSRCTs may differ from those seen in the abdominal setting, and therefore a high index of suspicion is required for cases that lack the classical appearance. In summary, the histologic features of intracranial DSRCTs can be highly variable, and therefore a high index of suspicion is required for cases that lack the classical appearance. Intracranial DSRCTs with \textit{EWSR1-WT1} fusion may not have the same degree of epithelial lineage marker expression as seen in intra-abdominal cases. Despite differences in the morphologic appearance and immunostaining profile, methylation analysis supports that intracranial DSRCTs represent a similar, if not the same, entity as DSRCTs seen elsewhere in the body.
Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This study was supported in part by the NIH Director’s Early Independence Award (DP5 OD021403) to D.A.S. We thank the staff of the UCSF Clinical Cancer Genomics Laboratory for assistance with genetic profiling, and the staff of the Molecular Pathology Laboratory of the University Medical Center Utrecht for their help with methylation profiling.

REFERENCES

Figure 1.
Representative pre-operative imaging from four cases of intracranial DSRCTs, showing T1 weighted MRIs with contrast. Images demonstrate the variety of radiologic findings including supratentorial and infratentorial locations, the variable degree of a cystic component, and relative degree of enhancement. Case #1: A right temporal heterogeneously enhancing mass. Case #3: A left cerebellar heterogeneous minimally enhancing mass. Case #4: A left parietal cystic mass with enhancing nodules. Case #5: A right frontal intrinsically T1 hyperintense mass with only focal nodular enhancement.
Figure 2.
Morphologic appearance of intracranial DSRCTs for cases 1–5. Case #1: Regions of this tumor resembled an astroblastoma-like glial neoplasm, while in other areas there was a markedly desmoplastic stroma with interspersed small round cells. Immunostaining for desmin, EMA, and synaptophysin are shown. Case #2: This tumor had a uniform solid appearance with sheets of hyperchromatic nuclei, and only focal areas of mild desmoplasia. Desmin was strong and diffusely positive. Case #3: The histology of this case resembled an anaplastic medulloblastoma, including cell-wrapping, large cells, and nuclear molding.
Rhabdoid features were appreciated focally; however, a desmoplastic stroma was not present in this case. Immunostaining for desmin, EMA, and NeuN are shown, depicting the globular desmin staining that is often described for DSRCTs. This was the only case in our series with extensive epithelial marker expression. Case #4: This tumor appeared low grade with prominent areas of desmoplasia. Immunostaining for desmin, pan-cytokeratin, and NeuN are shown. Case #5: These tumor cells contained small round blue nuclei, and there were focal areas of desmoplasia. Immunostaining for desmin, SMA, and synaptophysin are shown.
Figure 3.
DNA-methylation profiling data visualized by t-distributed stochastic neighbor embedding (t-SNE), for comparison of DSRCTs located intracranially (dark blue circles) to those occurring extracranially within the abdomen and soft tissues (black circles). Other relevant CNS and soft tissue tumor entities are also shown. Abbreviations: DSRCT: Desmoplastic small round cell tumor, RMS (ALV): alveolar rhabdomyosarcoma, RMS (EMB): embryonal rhabdomyosarcoma, SBRCT (BCOR−Group): Small blue round cell tumor with $BCOR$ alteration, SBRCT (CIC−Group): Small blue round cell tumor with CIC alteration.
Table 1.
Clinical and radiologic features of the five intracranial DSRCTs within our series. Available clinical and radiologic information, including the status at last follow-up and length of follow-up interval, is depicted. The Memorial Sloan-Kettering Cancer Center (MSKCC) P6 protocol has seven courses of chemotherapy. Courses 1, 2, 3, and 6 included cyclophosphamide 4,200 mg/m2, doxorubicin 75 mg/m2, and vincristine. Courses 4, 5, and 7 consisted of ifosfamide 9 g/m2 and etoposide 500 mg/m2 for previously untreated patients (34). The symbol “-” is used to indicate when selected information was not available. XRT: radiation therapy. Gy: gray. MSKCC: Memorial Sloan-Kettering Cancer Center.

<table>
<thead>
<tr>
<th>Case #</th>
<th>Age (years)</th>
<th>Gender</th>
<th>Tumor location</th>
<th>Size (cm)</th>
<th>Presenting symptoms</th>
<th>Imaging findings at presentation</th>
<th>Extent of resection</th>
<th>Adjuvant chemotherapy</th>
<th>Adjuvant radiation therapy</th>
<th>Clinical status</th>
<th>Length of follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>M</td>
<td>right temporal</td>
<td>4.3</td>
<td>seizures</td>
<td>solid and cystic mass, heterogeneous nodular enhancement</td>
<td>gross total</td>
<td>none</td>
<td>6 weeks of radiation therapy (XRT)</td>
<td>no evidence of disease</td>
<td>16 months</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>M</td>
<td>left occipital</td>
<td>6.3</td>
<td>-</td>
<td>heterogeneous mass (contrast not administered)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>M</td>
<td>left cerebellum</td>
<td>4.7</td>
<td>left hand numbness, headaches</td>
<td>heterogeneous mass, minimal nodular enhancement</td>
<td>gross total</td>
<td>none</td>
<td>none</td>
<td>deceased</td>
<td>1 month</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>M</td>
<td>left parietal</td>
<td>8.5</td>
<td>progressive right-sided weakness</td>
<td>multilocular cystic mass with enhancing nodules</td>
<td>gross total</td>
<td>6 cycles of vincristine and cyclophosphamide</td>
<td>XRT, 55.8 Gy in 31 fractions</td>
<td>no evidence of disease</td>
<td>13 months</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>M</td>
<td>right frontal</td>
<td>-</td>
<td>headaches</td>
<td>T1 hyperintense cystic mass with focal enhancement</td>
<td>gross total</td>
<td>MSKCC P6 protocol</td>
<td>XRT, 55.8 Gy with a daily fraction of 1.8 Gy</td>
<td>no evidence of disease</td>
<td>8 years</td>
</tr>
</tbody>
</table>
Table 2.

Histologic and immunohistochemical features of the five intracranial DSRCTs within our series.

<table>
<thead>
<tr>
<th>Case #</th>
<th>Initial diagnostic impression</th>
<th>Desmoplastic stroma</th>
<th>Mitotic index</th>
<th>Ki-67 LI</th>
<th>Necrosis</th>
<th>myogenic markers</th>
<th>Epithelial markers</th>
<th>Neuronal markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glial neoplasm with an astroblastoma-like pattern</td>
<td>Markedly desmoplastic stroma</td>
<td>Less than 1/10 HPFs</td>
<td>2%</td>
<td>Not present</td>
<td>Desmin: patchy strong positivity</td>
<td>EMA: focal CAM 5.2: negative Cytokeratin MCK: negative</td>
<td>Synaptophysin: focal NeuN: patchy Neurofilament: negative CD56: positive</td>
</tr>
<tr>
<td>2</td>
<td>Malignant tumor, not otherwise specified (NOS)</td>
<td>Only focal desmoplasia</td>
<td>10/10 HPFs</td>
<td>-</td>
<td>Foci of necrosis</td>
<td>Desmin: diffusely positive</td>
<td>EMA: negative CAM 5.2: negative AE1/AE3: negative</td>
<td>Synaptophysin: negative</td>
</tr>
<tr>
<td>3</td>
<td>Favor anaplastic medulloblastoma, WHO grade IV</td>
<td>Not present</td>
<td>12/10 HPFs</td>
<td>80%</td>
<td>Foci of necrosis</td>
<td>Desmin: diffusely positive SMA: negative</td>
<td>EMA: extensively positive CAM 5.2: patchy CK7: focal CK20: focal</td>
<td>Synaptophysin: patchy NeuN: patchy Neurofilament: patchy</td>
</tr>
<tr>
<td>4</td>
<td>Low-grade glioneuronal tumor</td>
<td>Markedly desmoplastic stroma</td>
<td>Less than 1/10 HPFs</td>
<td>8%</td>
<td>Not present</td>
<td>Desmin: diffusely positive Myogenin: negative</td>
<td>EMA: focal CAM 5.2: negative Pan-cytokeratin: focal</td>
<td>Synaptophysin: focal NeuN: patchy Neurofilament: negative CD56: positive</td>
</tr>
<tr>
<td>5</td>
<td>Small round blue cell tumor</td>
<td>Only focal desmoplasia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Desmin: strongly positive Myogenin: negative SMA: focally positive</td>
<td>EMA: negative CAM 5.2: negative Pan-cytokeratin: negative</td>
<td>Synaptophysin: focal CD56: positive</td>
</tr>
</tbody>
</table>
Table 3.

Molecular features of intracranial DSRCTs, including methylation profiling calibrated scores as analyzed by the DKFZ sarcoma classifier (molecularneuropathology.org), fusions, pathogenic mutations, and copy number alterations. For cases 1–4 the EWSR1-WT1 gene fusion was detected by the UCSF500 Cancer Panel, for case #5 the EWSR1-WT1 fusion transcript was detected by RT-PCR. The symbol “-” is used to indicate when selected information was not available.

<table>
<thead>
<tr>
<th>Case #</th>
<th>Methylation profile DKFZ Sarcoma Classifier</th>
<th>Fusions</th>
<th>Pathogenic mutations</th>
<th>Copy number alterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Desmoplastic small round cell tumor (calibrated score of 0.99)</td>
<td>EWSR1-WT1 gene fusion NM_013986, NM_024426 intron 8–9 of EWSR1 to intron 7–8 of WT1 334 reads over fusion junction</td>
<td>none</td>
<td>Loss of 8p</td>
</tr>
<tr>
<td>2</td>
<td>Desmoplastic small round cell tumor (calibrated score of 0.99)</td>
<td>EWSR1-WT1 gene fusion NM_013986, NM_024426 intron 8–9 of EWSR1 to intron 7–8 of WT1 229 reads over fusion junction</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>Desmoplastic small round cell tumor (calibrated score of 0.99)</td>
<td>EWSR1-WT1 gene fusion NM_013986, NM_024426 intron 8–9 of EWSR1 to intron 7–8 of WT1 191 reads over fusion junction</td>
<td>TERT promoter hotspot mutation c.-124C>T NM_198253 796 reads, 28% MAF</td>
<td>Gains of proximal 1p, 1q, 2, 5, 7, proximal 11p, 11q, 15, 18, 19, 20, 21, and distal 22q Losses of distal 1p, 16, and 17</td>
</tr>
<tr>
<td>4</td>
<td>Desmoplastic small round cell tumor (calibrated score of 0.99)</td>
<td>EWSR1-WT1 gene fusion NM_013986, NM_024426 intron 8–9 of EWSR1 to intron 7–8 of WT1 389 reads over fusion junction</td>
<td>STAG2 splice site mutation c.3278-1G>A NM_001042749 480 reads, 19% MAF</td>
<td>Gain of 1q and loss of 20p</td>
</tr>
<tr>
<td>5</td>
<td>Desmoplastic small round cell tumor (calibrated score of 0.99)</td>
<td>EWSR1-WT1 fusion transcript</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4.

A brief summary of the available clinical, radiologic, histologic, immunohistochemical, and molecular features for the seven previously reported cases of EWSR1-WT1 fusion-positive intracranial DSRCTs is provided within Table 4 (2, 9, 40, 50, 52), which is adapted from Thondam et al., 2015. Two other cases reported in the literature based on characteristic histology and immunostaining alone (54), or in combination with EWSR1 rearrangement by FISH (2), may also represent the same entity. The Memorial Sloan-Kettering Cancer Center (MSKCC) P6 protocol has seven courses of chemotherapy. Courses 1, 2, 3, and 6 included cyclophosphamide 4,200 mg/m2, doxorubicin 75 mg/m2, and vincristine. Courses 4, 5, and 7 consisted of ifosfamide 9 g/m2 and etoposide 500 mg/m2 for previously untreated patients (34). The symbol ‘-’ is used to indicate when selected information was not available. NSE: neuron specific enolase.

<table>
<thead>
<tr>
<th>Case #</th>
<th>Publication</th>
<th>Age (years)</th>
<th>Gender</th>
<th>Tumor location</th>
<th>Presenting symptoms</th>
<th>Imaging findings</th>
<th>Extent of resection</th>
<th>Adjuvant chemotherapy</th>
<th>Adjuvant radiation therapy</th>
<th>Clinical status</th>
<th>Length of follow-up</th>
<th>Histology</th>
<th>Immunohistochemistry</th>
<th>Molecular findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tison et al., 1996 (ref 52)</td>
<td>24</td>
<td>M</td>
<td>left posterior fossa</td>
<td>headache, emesis, vertigo, impaired hearing</td>
<td>4 cm mass adherent to the tentorium and petrous portion of the temporal bone, with displacement of left cerebellar hemisphere; no extracranial malignancy on CT/MRI total body scans</td>
<td>subtotal</td>
<td>3 cycles consisting of PCNU, cisplatin, and VP-16 intracranial methotrexate every 40 days</td>
<td>yes</td>
<td>alive with no clinical signs of relapse at time of publication</td>
<td>~3 years</td>
<td>compact nests of small uniform round and oval cells with hyperchromatic nuclei and scarce cytoplasm, separated by a desmoplastic stroma, infrequent mitoses, with areas of necrosis</td>
<td>Desmin: positive</td>
<td>EMA: positive</td>
</tr>
<tr>
<td>2</td>
<td>Bouchireb et al., 2008 (ref 9)</td>
<td>6</td>
<td>F</td>
<td>right temporal</td>
<td>headaches, complex partial seizures</td>
<td>well-demarcated heterogeneously enhancing mass; PET-CT was negative for extracranial malignancy</td>
<td>gross total</td>
<td>MSKCC P6 protocol</td>
<td>focal conformal irradiation to the tumor bed with a 2 cm margin at 54 Gy</td>
<td>no evidence of disease</td>
<td>18 months</td>
<td>small round cell tumor with hyperchromatic nuclei and eosinophilic cytoplasm embedded in a fibromyxoid stroma, mitoses were infrequent</td>
<td>Desmin: positive</td>
<td>EMA: negative</td>
</tr>
<tr>
<td>3</td>
<td>Neder et al., 2009 (ref 40)</td>
<td>37</td>
<td>M</td>
<td>left cerebellopontine angle</td>
<td>left-sided hearing loss and tinnitus</td>
<td>heterogeneously enhancing mass, initial imaging suggested an acoustic neuroma; no</td>
<td>subtotal</td>
<td>after subsequent debulking of intradural spinal nodules, patient received</td>
<td>stertactic irradiation to CPA tumor bed after subsequent debulking of recurrent disease with spinal dissemination at 6 months, died at 2 years</td>
<td>2 years</td>
<td>sheets of small to medium sized cells with hyperchromatic nuclei and inconspicuous nucleoli, with a</td>
<td>Desmin: positive</td>
<td>EMA: positive</td>
<td>CAM 5.2: positive</td>
</tr>
<tr>
<td>Case #</td>
<td>Publication</td>
<td>Age (years)</td>
<td>Gender</td>
<td>Tumor location</td>
<td>Presenting symptoms</td>
<td>Imaging findings</td>
<td>Extent of resection</td>
<td>Adjuvant chemotherapy</td>
<td>Adjuvant radiation therapy</td>
<td>Clinical status</td>
<td>Length of follow-up</td>
<td>Histology</td>
<td>Immuno-histochemistry</td>
<td>Molecular findings</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>4</td>
<td>Neder et al., 2009 (ref 40)</td>
<td>39</td>
<td>M</td>
<td>posterior fossa</td>
<td>gait imbalance, bilateral lower limb weakness, with subsequent fall and hypotonic paraparesis</td>
<td>extracranial malignancy on CT/MRI total body scans</td>
<td>decompression of spinal cord</td>
<td>3 cycles of cisplatin, etoposide, and Holoxan</td>
<td>intradural spinal nodules received brain and spinal irradiation, with radiosurgery to CPA</td>
<td>alive with progressive disease</td>
<td>27 months</td>
<td>viable perivascular tumor cells separated by necrosis, oval to irregular nuclei with coarse chromatin and scant cytoplasm, mitotic index 5/10 HPFs</td>
<td>Desmin: positive EMA: positive Synaptophysin: negative Neurofilament: negative Ki-67 LI: 11.5%</td>
<td>EWSR1-WT1 gene fusion detected by RT-PCR</td>
</tr>
<tr>
<td>5</td>
<td>Thondam et al., 2015 (ref 30)</td>
<td>27</td>
<td>M</td>
<td>suprasellar</td>
<td>panhypopituitarism, with subsequent development of bitemporal hemianopia one year later after missing follow-up appointments</td>
<td>heterogenously enhancing suprasellar mass extending into third ventricle and the pituitary fossa; whole-body imaging was negative for extracranial malignancy</td>
<td>near total resection</td>
<td>palliative chemoradiotherapy was initiated at recurrence but discontinued due to clinical deterioration</td>
<td>tumor recurred at 4 months, followed by cervical and mediastinal lymph node metastases, patient died at 20 months</td>
<td>20 months</td>
<td>nests and cords of fairly uniform cells with hyperchromatic nuclei and indistinct cytoplasm distributed in a desmoplastic stroma, with calcifications and necrosis</td>
<td>Desmin: positive CAM 5.2: positive Synaptophysin: negative Neurofilament: focal</td>
<td>EWSR1-WT1 gene fusion detected by RT-PCR</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Al-Ibraheemi et al., 2017 (ref 2)</td>
<td>6</td>
<td>M</td>
<td>intracranial, infratemporal fossa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>EWSR1-WT1 gene fusion detected by RT-PCR</td>
</tr>
<tr>
<td>7</td>
<td>Al-Ibraheemi et al., 2017 (ref 2)</td>
<td>37</td>
<td>M</td>
<td>cerebellopontine angle</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>yes</td>
<td>vertebral metastasis, died with disease</td>
<td>32 months</td>
<td>“Ewing sarcoma-like,” small cell, desmoplasia present</td>
<td>Desmin: positive Cyokeratin: focal</td>
<td>EWSR1-WT1 gene fusion detected by RT-PCR</td>
</tr>
</tbody>
</table>