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Abstract

The complex etiology behind Gulf War Illness (GWI) has been attributed to the combined 

exposure to neurotoxicant chemicals, brain injuries, and some combat experiences. Chronic GWI 

symptoms have been shown to be associated with intensified neuroinflammatory responses in 

animal and human studies. To investigate the neuroinflammatory responses and potential causes in 

Gulf War (GW) veterans, we focused on the effects of chemical/biological weapons (CBW) 

exposure and mild traumatic brain injury (mTBI) during the war. We applied a novel MRI 

diffusion processing method, Neurite density imaging (NDI), on high-order diffusion imaging to 

estimate microstructural alterations of brain imaging in Gulf War veterans with and without GWI, 

and collected plasma proinflammatory cytokine samples as well as self-reported health symptom 
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scores. Our study identified microstructural changes specific to GWI in the frontal and limbic 

regions due to CBW and mTBI, and further showed distinctive microstructural patterns such that 

widespread changes were associated with CBW and more focal changes on diffusion imaging 

were observed in GW veterans with an mTBI during the war. In addition, microstructural 

alterations on brain imaging correlated with upregulated blood proinflammatory cytokine markers 

TNFRI and TNFRII and with worse outcomes on self-reported symptom measures for fatigue and 

sleep functioning.

Taken together, these results suggest TNF signaling mediated inflammation affects frontal and 

limbic regions of the brain, which may contribute to the fatigue and sleep symptoms of the disease 

and suggest a strong neuroinflammatory component to GWI. These results also suggest exposures 

to chemical weapons and mTBI during the war are associated with different patterns of peripheral 

and central inflammation and highlight the brain regions vulnerable to further subtle microscale 

morphological changes and chronic signaling to nearby glia.
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1. Introduction

About a third of the nearly 700,000 U.S. troops who served in the Gulf War (GW) suffer 

from a complex, often debilitating symptomatic illness known as Gulf War Illness (GWI) 

(White et al., 2016). Symptoms of GWI typically include fatigue, chronic pain, memory and 

attention problems, headaches, gastrointestinal and respiratory symptoms which encompass 

the six symptom domains of the National Academy of Sciences recommended Kansas GWI 

criteria (Steele, 2000; National Academics of Sciences, Engineering, and Medicine, 2016). 

GWI has been associated with altered central nervous system (CNS) functioning (White et 

al., 2016). Chronic GWI symptoms are thought to develop as a result of a heightened innate 

immune response in the CNS to multiple exposures during the war including stress, 

neurotoxicant chemicals (organophosphate pesticides and nerve agents) and to other CNS 

insults, such as mild traumatic brain injury (mTBI) (Gade and Wenger, 2011; O’Callaghan et 

al., 2015; Rathbone et al., 2015; Yee et al., 2016; Yee et al., 2017; Janulewicz et al., 2018). 

mTBI as defined by the American Academy of Neurology has proven to be the most 

sensitive measure of mTBI in prior GWI research (Vynorius et al., 2016; Yee et al., 2016; 

Yee et al., 2017; Janulewicz et al., 2018). As such, the persisting symptoms of GWI have 

been hypothesized to coincide with a heightened, chronic neuroinflammatory reaction 

observed in animal models while increased blood levels of proinflammatory cytokines in 

veterans with GWI has also been reported (Whistler et al., 2009; O’Donovan et al., 2015, 

O’Callaghan et al., 2015; Khaiboullina et al., 2014; Parkitny et al., 2015; Locker et al., 2017; 

Koo et al., 2018; Miller et al., 2018; Janulewicz et al., 2019). However, we are not aware of 

any publications to date examining microstructural integrity and neuroinflammatory 

responses by utilizing brain imaging techniques to focus on mTBI and organophosphate 

(OP) exposure in GWI veterans.
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Exposure to neurotoxicants including OP pesticides and sarin nerve agents has been a 

unique risk factor associated with GWI (Golomb, 2008; White et al., 2016; Sullivan et al., 

2017). In animal models, exposure to OP nerve agents and pesticides, such as sarin and its 

surrogate diisopropyl fluorophosphate (DFP) and chlorpyrifos, was shown to produce 

neuroinflammation as indicated by increased proinflammatory cytokine signaling in the 

brain (Spradling et al., 2011; O’Callaghan et al., 2015; Locker et al., 2017). 

Neuroinflammatory cytokines were further associated with microstructural changes in the 

brain in the OP-exposed animal model of GWI indicating potential damage associated 

signaling and activation of proinflammatory cytokine release from nearby glia (Banks and 

Lein 2012; Koo et al., 2018).

These microstructural changes need not reflect neuronal damage or apoptosis but could 

rather reflect more subtle microscale morphological changes including dendritic or glial cell 

arborization (Spradling et al., 2011; Koo et al., 2018). In humans, brain morphometric 

analysis based on T1 weighted magnetic resonance imaging (MRI) scans of GW veterans 

exposed to the chemical weapon sarin showed overall reductions in grey matter (GM) and 

selective reductions in hippocampal subfield volumes when compared with unexposed 

veterans (Chao et al., 2011, 2015). In the white matter (WM), an overall reduction in tissue 

volume was observed in a dose–response manner in GW veterans with air plume-modeled 

exposure to sarin (Heaton et al., 2007). These WM volumetric changes in sarin exposed 

veterans have also been validated in other cohorts and correlated with cognitive outcomes 

(Proctor et al., 2006; Chao et al., 2010). More recently, two investigations using diffusion 

tensor imaging (DTI) have reported altered brain connectivity which correlated with fatigue, 

pain, or hyperalgesia in GW veterans with sarin exposure and in those with GWI (Rayhan et 

al., 2013; Chao et al., 2015). In both studies, enhanced axial diffusivity in the major WM 

tract pathways was suggested as a potential biomarker for GWI and was associated with 

more severe health symptom reporting (Rayhan et al., 2013; Chao et al., 2015). These 

findings indicate a structure–function relationship between WM changes and chronic health 

symptoms in GW veterans that may be related to chronic microglial activation and 

neuroinflammatory cytokine signaling from damaged neural cells including more subtle 

neurite microstructural alterations signaling to nearby glia (O’Callaghan et al., 2015; Banks 

and Lein, 2012; Rathbone et al., 2015).

Mild traumatic brain injury (mTBI) is another factor that can produce a secondary 

neuroinflammatory response post-injury (Kumar and Loane; 2012, Rathbone et al., 2015). 

mTBI is the most common type of traumatic brain injury affecting military personnel. More 

than 15 percent of returning members experienced mTBI (Hoge et al., 2008) and it has 

recently been shown to be highly prevalent (~30%) in the large, longitudinally-followed Ft. 

Devens cohort of GW veterans and in the Boston Gulf War Illness Consortium (GWIC) 

cohort of GW veterans (Hoge et al., 2008; Yee et al., 2016; Janulewicz et al., 2018). 

Increasing evidence suggests that a single mTBI may produce long-term progressive damage 

in GM and WM, and accelerate age-related neurodegeneration and neuroinflammatory 

signaling (Bramlett and Dietrich, 2002; Smith et al., 2013; Rathbone et al., 2015; Chao, 

2018). In addition, it has recently been shown that GW veterans with a mTBI history alone 

or in addition to sarin chemical weapons (CBW) exposure during the war are more likely to 

report persistent and debilitating chronic health symptoms and medical conditions 
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suggesting that multiple mTBIs or a single mTBI and chemical weapons exposure act as 

multiple-hits to the neuroimmune system that primes stronger and longer neuroinflammatory 

signaling in those exposed (Yee et al., 2017; Janulewicz et al., 2018; O’Callaghan and Miller 

2019). However, brain imaging outcomes in GW veterans with mTBI and with chemical 

weapons exposures during the war and their effect on microscale morphological changes 

including dendritic or glial cell arborization and neuroinflammatory signaling have yet to be 

reported.

We have previously demonstrated that high-order diffusion MRI showed a sensitivity to 

discriminate different stages of neuroinflammatory signaling in our established, OP exposed 

GWI animal model utilizing combined exposure to exogenous corticosterone at levels 

mimicking high physiological stress and the sarin surrogate, DFP (Koo et al., 2018). When 

combined with findings from other similar animal model studies, results suggest a strong 

brain-immune component to GWI that could be measured through brain imaging and 

peripheral blood immune markers and validated in GW veteran cohorts (O’Callaghan et al., 

2015, Spradling et al., 2011).

Neurite density imaging (NDI, Zhang et al., 2012) and Q-space imaging (Yeh et al., 2010) 

are two novel diffusion processing methods of the high-order diffusion MRI measures that 

have been shown to successfully detect local microscale diffusivity of axon and dendrite 

processes in animals and human studies of neurological disorders (Colgan et al., 2016, 

Zhang et al., 2012, Koo et al., 2018, McCunn et al., 2019). NDI compartmentalizes the brain 

environment into three components to sample microstructural diffusivity, and restricted 

diffusion imaging measure (RDI) in Q-space imaging method provides diffusion 

displacement in the three-dimensional space that could provide similar diffusion information 

of NDI by analyzing different boundaries in the three-dimensional space (Zhang et al., 2012; 

Yeh et al., 2010, 2017). Both NDI and RDI can provide detailed description of microscale 

diffusivity of brain tissues and nearby free water space without applying predefined linear 

diffusion models as seen in conventional DTI approaches (Tuch, 2004; Zhang et al., 2012). 

Decomposing slow diffusion components with links to subneuronal, glial or extracellular 

compartments may give detailed insights on pathophysiologic profile of disease.

In this study, we investigate whether an NDI processing model of high-order diffusion MRI 

can successfully identify and validate the different levels of microstructural and 

macrostructural brain alterations previously seen in animal models of GWI by utilizing RDI 

(Koo et al., 2018) and assessing how these patterns overlap in veterans with GWI from the 

Boston Gulf War Illness Consortium. We also assessed the relationship between brain 

imaging measures, blood neuroinflammatory markers, and self-reported health symptoms in 

veterans with GWI and GW control veterans. Lastly, we compared the separate and 

combined effects of mTBI and chemical weapons exposure on high-order microstructural 

diffusion MRI, blood neuroinflammatory markers, and health symptom outcomes.
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2. Materials and methods

2.1. Participants

The study population included 91 GW veterans from the Boston University Gulf War Illness 

Consortium (GWIC). The GWIC is a multi-site study that includes a series of preclinical and 

clinical studies designed to understand the pathobiological mechanisms responsible for the 

chronic symptoms of GWI and to identify diagnostic markers and targeted treatments for the 

disorder. GWIC inclusion criteria required deployment to the Persian Gulf between August 

1990 and July 1991. GWIC exclusion criteria included diagnoses of chronic medical 

illnesses that could otherwise account for the symptoms experienced by GW veterans. These 

diagnoses included autoimmune, central nervous system, or major psychiatric disorders that 

could affect brain and immune functions (e.g., epilepsy, stroke, severe head injury, brain 

tumor, multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, schizophrenia, bipolar 

disorder, and autoimmune disorders). Each of the study participants completed an 

assessment protocol including health surveys, a neuropsychological test battery, brain 

imaging, and collection of blood and saliva samples (Janulewicz et al., 2018). All 

participants provided written informed consent to participate in the study. This study was 

reviewed and approved by the Boston University institutional review board.

2.1.1. Gulf war illness criteria—GWI case status was defined from the Kansas GWI 

case definition (Steele, 2000). The Kansas GWI case definition requires GWI cases to 

endorse multiple or moderate-to-severe chronic symptoms in at least three of six 

statistically-defined symptom domains: fatigue/sleep problems, somatic pain, neurological 

cognitive/mood symptoms, gastrointestinal symptoms, respiratory symptoms and skin 

abnormalities (Steele, 2000). GWIC participants not meeting Kansas GWI or exclusionary 

criteria were considered controls. Veterans were excluded from being considered GWI cases, 

for purposes of the research study, if they reported being diagnosed by a physician with 

medical or psychiatric conditions that would account for their symptoms or interfere with 

their ability to report their symptoms.

2.1.2. Self-Reported mild traumatic brain injury (mTBI)—To determine mTBI 

status, participants were given a concussion definition that follows the current guidelines 

from the American Academy of Neurology and was used in our prior GW veteran mTBI 

publications (Vynorius et al., 2016; Robbins et al., 2014; Seichepine et al., 2013; Janulewicz 

et al., 2018; Yee et al., 2016; Yee et al., 2017). Participants were provided with the mTBI 

definition and examples of common symptoms associated with mTBI and were then asked 

to report if they had experienced mTBI during their deployment, they were also asked to 

self-report how many mTBIs they had experienced during the war.

2.1.3. Chemical/Biological weapon (CBW) exposure—GWIC subjects were 

administered the Kansas Gulf War Experiences and Exposure Questionnaire, and the 

Structured Neurotoxicant Assessment Checklist (SNAC) to assess for deployment-related 

exposures (Proctor et al., 1998; Steele 2000; Proctor et al., 2006). Self-reported exposures to 

chemical or biological weapons (CBWs) were obtained from the SNAC by asking the 
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veterans whether or not they were exposed to CBWs during military service (Proctor et al., 

1998).

2.1.4. Demographics and health symptom surveys—GWIC subjects were also 

administered a general demographic information and medical conditions questionnaire and 

the Kansas Gulf War and Health Questionnaire (Proctor et al., 1998; Steele 2000). 

Additional validated health symptom surveys were completed by study participants and 

included the Multidimensional Fatigue Inventory (MFI-20), McGill Pain Inventory and the 

Pittsburgh Sleep Quality Index (PSQI) where higher scores indicated more symptoms 

(Buysse et al., 1989; Smets et al., 1995; Melzack, 1975).

2.1.5. Cytokines—EDTA plasma was separated and stored at − 80 °C until assayed. 

Cytokines were measured with an 18-multiplex chemiluminescent assay using Quansys Q-

view Imager LS 1.3 and reagents in methods previously reported (Fletcher et al., 2009). 

Each 18-multiplex plate was imaged at 500 sec, 270 sec, 180 sec, 120 sec. Following the 

manufacture’s protocol, the 270-sec images were used for further analysis. All plates were 

normalized by using an internal plasma control (pooled plasma from 50 men and 50 

women). This internal control (IC) was run on each plate, average pg/ml was calculated for 

IC across plates and each plate normalized to the percent change from IC average. This 

normalization removes variability between plates. In instances when the cytokine expression 

was below the level of detection (BLD), the difference between the lower limit of detection 

and 0 was used. To determine if circulating proinflammatory cytokines levels were different 

between GWI cases and controls, plasma samples were examined by symptom group. In this 

study, chemiluminescent imaging concentrations of three cytokines in plasma samples were 

examined and compared to the brain imaging measures. Cytokines of interest were 

Interleukin 1 alpha (IL1ɑ), Tumor necrosis factor receptor type I (TNFRI) and Tumor 

necrosis factor receptor type II (TNFRII) based on previously demonstrated relationships 

between GWI and blood cytokine measures (Jaundoo et al., 2018; O’Callaghan et al., 2015; 

Khaiboullina et al., 2014; Broderick et al., 2011).

2.2. Image acquisition

All MRI scans were performed on an Achieva 3 T whole-body MRI scanner (Philips 

Healthcare, Best, The Netherlands) in the center of biomedical imaging, Boston university 

school of medicine.

2.2.1. T1 MPRAGE Acquisition: The Alzheimer’s disease neuroimaging 
initiative (ADNI)—developed an MPRAGE sequence that was used for this study (TR = 

6.8 msec, TE = 3.1 msec, flip angle = 9°, slice thickness = 1.2 mm, 170 slices, FOV = 250 

mm, matrix = 256 × 256). We used the MPRAGE scan to generate the anatomical regions of 

interest (ROI) for assessing morphometric differences between the groups and also to 

provide anatomical co-registration with the DTI and fMRI data sets.

2.2.2. Diffusion MRI: The diffusion MRI data were obtained using a single-
shot EPI sequence—with multi-shell diffusion encoding (b-value used = 1000, 2000, and 

3000 s/mm2). We used 124 gradient directions utilizing parallel imaging on a 16-channel 
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parallel head coil (70 slices, TR = 13214 msec, TE = 55 msec, with a matrix size of 128 × 

128 yielding a resolution of 2.0 × 2.0 × 2.0 mm3, no slice gap). In addition to distortion 

corrections built into the scanner, we also collected 6 B0 field maps for further distortion 

correction.

2.3. Image processing and anatomical defining

2.3.1. Defining GM anatomy—Defining anatomical structures in the cortex was the 

first step in analyzing brain images. MPRAGE structural scans were analyzed using 

FreeSurfer (Fischl, 2012) to obtain measures of volume, cortical thickness and surface 

geometry for each anatomical ROIs implemented in the brain atlas (Desikan et al., 2006). 

Seventy-eight ROIs defined in the average template space were co-registered to each 

subject’s cortical surface by applying nonlinear coregistration parameters. The results were 

visually inspected for artifacts or incomplete segmentation. A total of seventy-eight cortical 

and subcortical ROIs were chosen for the analysis.

2.3.2. Defining WM anatomy—Diffusion MRI was registered to the structural MRI 

following the motion and eddy current distortion correction (Jenkinson et al., 2012). 

TRACULA (TRActs Constrained by UnderLying Anatomy) software was used to perform 

tract-based analysis on the preprocessed diffusion MRI data (Yendiki et al., 2011). Eighteen 

major white matter tracts were reconstructed for each subject.

2.4. High-order diffusion processing

To reconstruct microstructural information from high-order diffusion MRI, Neurite Density 

Imaging (NDI) processing was performed on merged high-order diffusion MRI images 

containing 3 different b-value encodings (Zhang et al., 2012). NDI applies a two-level 

approach by separating the volume fraction of Gaussian isotropic diffusion, representing the 

cerebrospinal fluid (CSF) water component. Then, the remaining diffusion signal is sub-

compartmentalized into components from intra and extra-neurite water (Zhang et al., 2012). 

This modeling procedure provides a neurite density (ND) index, a fraction of tissue 

composed of axons or dendrites, and the fraction of tissue other than neurites. Orientation 

dispersion (OD) index provides the spatial configuration of the neurite structures based on 

the composite pattern of intra and extracellular diffusivity. Both ND and OD measures in 

each voxel were merged into 18 WM major tracts to extract tract-wise measures. For the GM 

and subcortical GM diffusivity assessment, diffusion modeling parameters were determined 

by iterative parameter selection methods based on the maximum likelihood estimation of 

modeling fitting error. These three different measures from this step were then merged into 

the 78 GM ROIs to extract ROI-wise NDI measures.

2.5. Statistical analysis

Group differences on ROI levels between GW veteran controls (GW Cont) and veterans with 

GWI (GWI Case) were assessed by generalized linear regression models controlling 

potential confounding variables such as age and gender (Gur et al., 1991). Significant p-

values (p < 0.05) were first calculated through nonparametric permutation tests with 10,000 

permutations (Winkler et al., 2014), then we applied the Benjamini & Hochberg procedure 

to control the false discovery rate (FDR) (Benjamini and Hochberg, 1995; Groppe et al., 
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2014). Significant p-values after permutations (p) or FDR adjustment (FDR_adj_p) in the 

whole GM and WM group comparisons were reported along with t-values.

Partial correlations controlling for age and gender were applied on:

1. Multidimensional Fatigue Inventory scale (MFI) and GM NDI data;

2. Pittsburgh Sleep Quality Index (PSQI) sleep score and GM NDI data;

3. plasma blood cytokine data and GM NDI data. Both whole group and subgroup 

level analyses were assessed in this study. Significant p-values after permutations 

(p) or FDR adjustment (FDR_adj_p) in the whole group and subgroup levels 

were reported along with the Pearson correlation coefficients (rho). For 

subgroups analyses with small sample sizes, we included 95% confidence 

intervals (95% CI)

3. Results

3.1. Demographic results

The first 91 GWIC veterans with brain imaging completed were the participants in this 

study. 75 GW veterans met Kansas criteria for GWI (GWI Cases) and 16 GW veterans did 

not meet Kansas GWI criteria and were considered GW veteran controls (GW Controls). 

Veterans with GWI were further divided into subgroups based on self-reported exposures to 

chemical weapons (CBW) or mTBI during their deployment. Those exposed to mTBI during 

deployment (GWI + mTBI; n = 23), CBW agents (GWI + CBW; n = 33) or both exposures 

(GWI + mTBI + CBW; n = 12) (Table 1).

3.2. GWI decreases NDI measures in both WM and GM regions

Whole group analysis in both WM and GM imaging measures indicated significant 

differences between GWI cases and controls, with p-values < 0.05 after FDR correction 

(Fig. 1, Sup.1, Sup.2).

Compared to controls, significantly decreased patterns in GWI cases were seen in ND for all 

major WM tracts. Both ND and OD showed decreased patterns for most GM ROIs. The 

highest significant group differences between GWI cases and controls were seen in the left 

cingulum angular bundle (cab, t = −2.963, FDR_adj_p = 0.027), the bilateral uncinate 

fasciculus (unc, t = −2.749, FDR_adj_p = 0.026 (left), t = −2.941, FDR_adj_p = 0.026 

(right)), the bilateral rostral anterior cingulate (t = −3.272, FDR_adj_p = 0.026 (left), t = 

−2.882, FDR_adj_p = 0.026 (right)), and the bilateral fusiform gyrus (t = −3.006, 

FDR_adj_p = 0.026 (left), t = −2.909, FDR_adj_p = 0.026 (right)) (Fig. 1, Sup.1, Sup.2).

3.3. GWI subgroups have distinct patterns of behavioral symptoms and brain changes

Specific risk factors were selected to define subgroups for correlation analysis to self-

reported health symptom measures. GM ND and self-reported symptom scores within 

mTBI, CBW and mTBI + CBW subgroups showed an overall negative relationship, but 

highlighted specific regions in each subgroup (Fig. 2, Sup. 3, Sup. 4). There were more 

localized patterns in GWI + mTBI ND and OD measures, with the most significant results 
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seen in the left pars orbitalis for the MFI score (rho = −0.706, FDR_adj_p = 0.027, 95% CI 

= [−0.859, −0.389]) and the left lingual gyrus for the PSQI score (rho = −0.709, FDR_adj_p 

= 0.036, 95% CI = [−0.860, 0.374]) (Fig. 2, Sup. 3, Sup. 4). Conversely, the GWI + CBW 

subgroup has more widespread and bilateral patterns for both ND and OD, some of the most 

significant results seen in the bilateral rostral anterior cingulate for the MFI score (rho = 

−0.655, FDR_adj_p = 0.002, 95% CI = [−0.803,−0.373] (left), rho = −0.605, FDR_adj_p = 

0.002, 95% CI = [−0.771,−0.297] (right)) and the bilateral caudal anterior cingulate for the 

PSQI score (rho = −0.520, FDR_adj_p = 0.038, 95% CI = [−0.688, −0.129] (left), rho = 

−0.493, FDR_adj_p = 0.038, 95% CI = [−0.779, −0.316] (right)) (Fig. 2, Sup. 3, Sup. 4). 

The GWI + mTBI + CBW group showed enhanced patterns in restricted regions found in the 

single risk factor subgroup analysis, with the most significant results seen in the bilateral 

caudal middle frontal gyrus (rho = −0.804, FDR_adj_p = 0.036, 95% CI = [−0.949, 0.476] 

(left), rho = −0.808, FDR_adj_p = 0.036, 95% CI = [−0.951, 0.491] (right)) for the MFI 

score and the right parahippocampal gyrus for the PSQI score (rho = −0.698, p = 0.036, 95% 

CI = [−0.919, −0.194]) (Fig. 2, Sup. 3, Sup. 4).

3.4. Peripheral immune markers are associated with decreased NDI measures

Plasma cytokine markers showed negative relationships with NDI measures within the 

subgroups (Fig. 3, Sup. 5, Sup. 6, Sup. 7). Specifically, in the GWI + mTBI group, TNFRI 

and TNFRII showed significant negative correlations with the left entorhinal cortex (TNF 

RI: rho = −0.439, p = 0.041, 95% CI = [−0.707, −0.006]; TNF RII: rho = −0.523, p = 0.015, 

95% CI = [−0.758, −0.115]) and the left parahippocampal gyrus (TNF RII: rho = −0.461, p 

= 0.036, 95% CI = [−0.735, −0.063]) regions (Sup. 5, Sup. 7). Additionally, partial 

correlation analysis of IL1A revealed the most significant relationship with the left middle 

temporal gyrus (rho = −0.567, p = 0.008, 95% CI = [−0.804, −0.229]) (Sup. 5, Sup. 7). In 

the GWI + CBW group, TNFRII had significant negative correlations with many bilateral 

cortices including the entorhinal, cingulate, parahippocampal, thalamus, occipital and 

temporal regions. The bilateral entorhinal cortices had the most significant negative 

correlation to TNFRII (rho = −0.525, p = 0.002, 95% CI = [−0.721, −0.192] (left), rho = 

−0.418, p = 0.017, 95% CI = [−0.669, −0.093] (right)) (Fig. 3, Sup. 5, Sup. 6).

4. Discussion

This study showed that the NDI model of high-order diffusion MRI processing detected 

detailed microstructural alterations in WM tracts and GM ROIs in veterans with GWI, which 

validated results from our previous work utilizing the GWI rat model where 

neuroinflammation, as measured by increased brain cytokine signaling, was correlated with 

high-order diffusion MRI in toxicant-exposed animals (Koo et al., 2018). Our major findings 

are 1) Veterans with GWI showed widespread microstructural changes compared to control 

veterans in both ND and OD measures, with the most pronounced differences in the frontal 

white matter tracts and the limbic/paralimbic cortical regions, 2) Veterans with more 

pronounced brain changes reported higher rates of exposure to mTBI and CBW during their 

deployment, 3) Veterans with CBW exposure showed widespread microstructural brain 

changes while those with mTBI showed more focal microstructural changes on high-order 

diffusion MRI. 4) Behavioral symptoms were associated with distinct brain changes across 
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the GWI exposure subgroups, and 5) Peripheral immune cytokine markers correlated with 

increased fatigue and sleep symptoms and with brain NDI measures in veterans with GWI 

indicating structure–function relationships between brain imaging, inflammatory markers, 

and behavioral outcomes.

The tissue water diffusion information captured in diffusion MRI can be potentially sensitive 

to many factors including axons, dendrites as well as myelinated fibers, changes in the 

neuroglial cells may also be a potential factor for differential patterns in water diffusivity 

(Gulani et al., 2001; Naughton et al., 2018; Belgrad et al., 2019). Water diffusivity may 

differ from either loss of existing neurons or reproduced neurons (neurogenesis) in the tissue 

medium. Also, changes in morphology in neuroglial cells take place during different stages 

of activation thereby resulting in differential patterns of water diffusivity in the brain 

(Raivich et al., 1999). Considering all these components, variations in the tissue environment 

might be expressed in a mixture of diverse diffusion strengths. A significant loss in cell 

populations can impact fast (i.e., macroscopic) water diffusion components since there will 

be less barriers for restricting water diffusion in the cell medium (Johnson et al., 2014). On 

the other hand, changes in sub-neuronal components, such as synaptogenesis or glial 

activation, can increase complexity in the medium and thereby change distinct diffusion 

components compared to the neuronal loss (Zhuo et al., 2012). While DTI measures could 

provide overall information of microstructural tissue changes in the brain, common markers 

of DTI, mean diffusivity (MD) and fractional anisotropy (FA), take in account of changes in 

all tissue components, hence novel approaches such as NDI and RDI could provide more 

specific information on the aforementioned changes in different tissue components as well 

as fiber orientation estimation (Tuch, 2004; Zhang et al., 2012)

OP nerve agents induce neuroinflammatory responses in cortical structures including limbic 

and paralimbic structures (Spradling et al., 2011; Rao et al., 2017; Naughton et al., 2018). 

Such neuroinflammatory responses might result from neurological damage as a result of 

neurotoxicant exposure and damage signaling to innate immune cells (Milligan and Watkins, 

2009). However, the level of damage might also show mild long-lasting changes in sub-

neuronal components and morphometry of neurite cells including axons and dendrites rather 

than the remarkable loss of neurons (Spradling et al., 2011; O’Callaghan et al., 2015). The 

lower range of diffusion encodings used in diffusion MRI (typically, around b = 1000 s/

mm2) is the most common protocol in clinical imaging. Under this protocol, diffusion MRI 

has been a powerful tool for assessing WM major pathways, edema, or brain tumors. 

However, it does not have enough sensitivity to assess the mild progressive damage in the 

sub-neuronal components since the sub-neuronal component alterations including axonal 

microtubule density and stability changes, myelin depletion and oligodendrocyte function 

and arborization of dendrites or glial process morphometry changes might induce changes in 

variant forms of microscopic water diffusivities (Rao et al., 2017; Naughton et al., 2018; 

Belgrad et al., 2019). In our previous study on GWI animal model brain imaging, we 

confirmed neurotoxicant-induced neuroinflammatory response accompanies microscale 

changes in the neuronal cell environment that significantly correlated with proinflammatory 

cytokine signaling (Koo et al., 2018). These results also highlight the ability to detect 

inflammatory-induced changes in microstructural diffusion imaging. The results from our 
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previous work were the rationale for studying separate diffusion components on brain 

imaging in GW veterans with various exposures and peripheral cytokine markers.

Based on the high-order diffusion MRI, we have confirmed that the NDI successfully and 

significantly differentiated between veterans with and without GWI. While NDI measures 

revealed overall and widespread pattern differences between groups, the clearest distinctive 

pattern was confirmed in the limbic/paralimbic structures along with the anterior WM 

connections. However, little significant differences were observed in DTI measures in major 

WM tracts (Sup. 11). In addition to WM, GM diffusion mapping provided a clear 

explanation of the relationship between microstructural damage and illness symptoms. 

Considering the cytoarchitectural profiles of the cortical structures, GM measures from high-

order diffusion MRI may reflect distinct patterns of microstructural damage across regions. 

As previously discussed (Glasser et al., 2014), neuronal density in brain regions co-varies 

with myelinated axons. While NDI could be sensitive to myelinated axons (Fukutomi et al., 

2018; Grussu et al., 2017), lowered ND in both medial prefrontal regions and anterior WM 

tracts may reflect damage in myelinated axons. However, other regions had more dominant 

changes in GM than in the WM. The cingulate cortex and parahippocampal area have 

relatively thick cortical layers and unmyelinated fibers. These regions may account for 

different neurological sources for NDI mapping. Similar to what we have confirmed from 

the animal model of GWI using RDI measure (Koo et al., 2018), we have found a strong link 

between NDI measures and RDI measure on the GW human data used in this study, 

suggesting NDI profiles may also account for neuroinflammatory responses in the brain 

(Sup. 11). Indeed, some of our NDI mappings, such as the precuneus and the anterior 

cingulate cortex, have overlapped patterns to those of a recent GWI study using the 

translocator protein (TSPO) based positron emission tomography imaging (Alshelh et al., 

2020). This may indicate that NDI contrasts can be affected by activated glial cell 

populations in local brain regions.

Multiple risk factors have been investigated in search of the underlying causes of GWI 

symptoms, suggesting a neuroinflammatory etiology due to individual or multiple 

neurotoxicant exposures during deployment (White et al., 2016; Abou-donia et al., 2017; 

Sullivan et al., 2017). Recent studies have identified mTBI to play a significant role in 

increased rates of health-related symptoms (Yee et al., 2016; Yee et al., 2017, Chao, 2018; 

Janulewicz et al., 2018) in GW veterans whereas OP chemical warfare agents were critical 

risk factors to GWI symptoms specifically (Chao et al., 2010, 2011, 2015). Besides, high-

order diffusion MRI has previously been shown to detect microstructural changes in a rat 

model of mTBI (Zhuo et al., 2012). As a result, we focused on GWI cases with either one or 

both of those risk factors as separate subgroups for further analysis and to recapitulate 

existing results. In this study, mTBI groups showed more focal diffusion changes while the 

CBW exposed group showed more widespread diffusion changes in the WM tracts and the 

GW ROIs. Similar to what we confirmed with GWI animal models, this may indicate that 

microscale changes in the neuronal cell environment can be a potential biomarker for 

explaining illness symptoms in GWI and groups with specific brain insults (physical and 

chemical) during the war (Koo et al., 2018). However, further testing in a large scale sample 

is needed to draw integrative and generalizable conclusions.
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4.1. Behavioral symptoms and associated brain changes

Due to the complex, multi-symptomatic etiology of GWI, various clinical and self-reported 

symptom measures were used in our correlation analysis to investigate the relationship 

between imaging results and symptom severity. Overall, subjects with more depleted ND 

and OD reported worse sleep quality on PSQI and higher fatigue levels on the MFI 

indicating objective markers for subjective symptom complaints. We observed the most 

significant correlation between imaging data and MFI scores indicated a strong CNS 

component to fatigue in GWI. Fatigue symptoms showed strong associations with decreased 

parahippocampal measures, which is consistent with previous studies on GM volumes in 

other disorders including chronic fatigue syndrome (Puri et al., 2012; Tang et al., 2015; 

Kimura et al., 2019). Limbic and nearby related paralimbic areas had the most altered GM 

integrity and also displayed the most significant negative relationships among all regions in 

addition to the particular regions responsible for each symptom.

4.2. TNF mediated inflammation

Proinflammatory cytokine levels in the blood could be used as markers to indirectly analyze 

CNS innate immune responses after exposures or experiences to noxious external stimuli, 

which in GWI studies were often chemical warfare agents and exposures to similar classes 

of chemicals (Michalovicz et al., 2019). Exposure to neurotoxicants such as sarin, PB, 

pesticides, and other chemical warfare agents has been identified to pose negative health 

effects in GW veterans in cohort studies (Chao et al., 2010, 2011,2015; Sullivan et al., 2003; 

Sullivan et al., 2017; Zundel et al., 2019) and controlled animal studies (Abdullah et al., 

2011). Indeed, the GWI + CBW group displayed significantly upregulated TNF RI and TNF 

RII along with decreased ND in frontal and subcortical limbic regions, similar regions 

highlighted with symptom-specific domains. The main ligand for both TNF RI and TNF RII, 

TNFɑ is a potent inflammatory cytokine released by macrophages triggering numerous 

events including apoptosis, edema, and leukocyte adhesion (Zelová and Hošek, 2013). 

Receptor shedding has been proposed as a mechanism to counteract high levels of TNFɑ to 

balance inflammatory responses (Xanthoulea et al., 2004; Hawari et al., 2004). Previous 

studies have shown TNFɑ to be a significant biomarker for GWI (Broderick et al., 2011; 

Khaiboullina et al., 2014; O’Callaghan et al., 2015; Jaundoo et al., 2018). However, unlike 

what we confirmed from TNF RI and RII, we did not see significant patterns in TNFɑ in this 

study. The discrepancy between these measures should be determined in further studies to 

clarify the role of the TNF pathway in mediating inflammation, which may contribute to the 

fatigue and sleep symptoms of the disease.

5. Conclusion

Our study provides neuroimaging evidence underlying GWI etiologies and reveals GWI-

specific microstructural changes in the frontal and subcortical paralimbic regions due to 

mTBI and chemical weapons exposures. We showed for the first time in GW veterans that 

mTBI was associated with discrete focal microstructural changes on MRI and that chemical 

weapons exposures resulted in more diffuse and widespread microstructural changes on 

brain imaging. In addition, these microstructural brain changes correlated with peripheral 

neuroinflammatory markers in the blood of veterans with GWI. When these results are 
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combined with our prior studies showing correlations with brain cytokines and 

microstructural changes in the GWI animal model, this provides compelling evidence for 

neuroinflammation in the pathobiology of GWI. This is especially the case given that the 

NDI microstructural brain changes also negatively correlated with the self-reported markers 

of fatigue and sleep on the MFI and PSQI which suggests functional consequences from 

these structural changes and also validates their use as objective measures and validating 

NDI imaging as a potential marker of treatment trial efficacy pre- and post-treatment for 

GWI symptoms. Correspondingly, current GWI literature on microstructural alterations due 

to neuroinflammation in the limbic areas have indicated changes in memory and emotion-

related functions as evidenced by psychological and health outcome correlational studies 

(Toomey et al., 2009; Chao et al., 2010; Abdullah et al., 2011; Chao et al. 2011; Sullivan et 

al., 2003; Janulewicz et al., 2018; Sullivan et al., 2017; Jeffrey et al., 2019). However, there 

are several limitations to human studies, which can be overcome with concurrent controlled 

animal experiments as we have done in our ongoing GWIC studies (O’Callaghan et al., 

2015; Koo et al., 2018). Further studies are needed to elucidate which neuronal and glial 

changes are contributing to diffusion imaging results seen here and how microstructural 

alterations may lead to higher risks of accelerated aging and earlier risks for 

neurodegenerative and cerebrovascular diseases in GW veterans so that intervention 

strategies can be implemented (Barnes et al., 2018; Smith et al., 2013; Zundel et al., 2019).
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Fig. 1. 
ND feature mapping of whole group WM and GM analyses highlights group effects in 

widespread regions, most significantly seen in frontal white matter tracts and subcortical 

limbic regions. Fmaj = corpus callosum forceps major, fmin = corpus callosum forceps 

minor, atr = anterior thalamic radiations, cab = cingulum-angular bundle, ccg = cingulate 

gyrus bundle, cst = corticospinal tract, ilf = inferior longitudinal fasciculus, slfp = superior 

longitudinal fasciculus parietal, slft = superior longitudinal fasciculus temporal, unc = 

uncinate fasciculus, pars_op = pars opercularis, sup_par = superior parietal, b_st = banks of 

superior temporal sulcus, inf_temp = inferior temporal, c_aCing = caudal anterior cingulate, 

r_aCing = rostral anterior cingulate, m_orbFrt = medial orbitofrontal, php = 

parahippocampal, hipp = hippocampus, thal = thalamus proper, precu = precuneus, paracent 

= paracentral. * p < 0.05, ˆ FDR_adj_p < 0.05.
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Fig. 2. 
Self-reported symptoms correlation mapping in GWI subjects exposed to chemical or 

biological warfare agents or mTBI. Regions with significant correlation between ND and 

PSQI (A, left upper) or MFI (A, left lower) in GW veterans with chemical/biological 

warfare agent exposures are rendered based on significance levels. Regions with significant 

correlation between ND and PSQI (A, right upper) or MFI (A, right lower) in GW veterans 

with mTBI exposure are rendered based on significance levels. Panel B shows data 

distribution patterns of ND and PSQI (B, middle and right) or MFI (B, left) scores in 

representative regions within each subgroup. Some subjects did not have available PSQI 

data, therefore, the number of subjects (n) used for subgroup correlation is indicated in the 

figure and 95% CIs are provided. * p < 0.05,ˆ FDR_adj_p < 0.05, ⩓ FDR_adj_p < 0.01.
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Fig. 3. 
Blood cytokine correlation mapping in GWI subjects exposed to chemical and biological 

warfare agents. Regions with significant correlation between ND and TNF_RII (A) are 

rendered based on significance levels. Panel B shows data distribution patterns of ND and 

TNF_RII levels in the representative region within the GWI + CBW subgroup. * p < 0.05, 

** p < 0.01.
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Table 1

Demographic and self-reported exposure to risk factors information for GWI case and control subjects.

GW Control GWI Case

N 16 75

Age (years) 53.85 52.07

Gender (F/M) 1/15 16/59

Exposure to risk factors during war (% exposed)

Mild traumatic brain injury (mTBI) 0% 30.67%

Chemical/Biological warfare agents (CBW) 12.50% 44%

mTBI + Chem/Bio warfare agents (mTBI + CBW) 0% 16%
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