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Mathematical Descriptions of Algorithms 

Throughout the following, we will use the following notation. 𝐺𝐺 refers to a network with the adjacency 
matrix 𝐴𝐴 with 𝑛𝑛 total nodes. Furthermore, we restrict our discussion to unweighted, undirected 
networks. An edge between node 𝑖𝑖 and node 𝑗𝑗 in the adjacency matrix is defined as 

𝐴𝐴𝑖𝑖𝑖𝑖 = �1, if 𝑖𝑖 and 𝑗𝑗 are connected
0, otherwise�

The degree of node 𝑖𝑖 is the total number of edges connected to 𝑖𝑖, written as 

𝑑𝑑𝑖𝑖 = �𝐴𝐴𝑖𝑖𝑖𝑖
𝑗𝑗

 

The total number of edges in the network is defined as 

𝑚𝑚 = 1
2
�𝐴𝐴𝑖𝑖𝑖𝑖
𝑖𝑖,𝑗𝑗

 

Modularity is defined as 

𝑄𝑄 =
1

2𝑚𝑚
��𝐴𝐴𝑖𝑖𝑖𝑖 −

𝑑𝑑𝑖𝑖 ∗ 𝑑𝑑𝑗𝑗
2𝑚𝑚

� ∗ 𝐼𝐼�𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑗𝑗�
𝑖𝑖,𝑗𝑗

 

where 𝑐𝑐𝑖𝑖 indicates the index of the community that node 𝑖𝑖 belongs to. The indicator function is defined 
as 

𝐼𝐼�𝑐𝑐𝑖𝑖 =  𝑐𝑐𝑗𝑗� = �1,  if 𝑖𝑖 and 𝑗𝑗 in same community
0, otherwise�

Random walks in networks are flows on paths of edges connecting nodes based on successions of 
random steps. The concept of random walks between nodes is used by several algorithms to define 
communities. Often this is operationalized through a probability formula rather than directly simulating 
random walks within the network. 

Divisive 

Divisive algorithms begin with all nodes being considered as a single community. The process repeatedly 
divides the network into smaller communities by detecting and removing edges that link disparate 
communities.  

Edge-betweenness 
Also referred to as the Girvan-Newman algorithm [1], the edge-betweenness algorithm divides a 

network into communities by iteratively dividing the network into smaller pieces using single edge 
deletion. The edge deleted in each iteration is decided by the edge-betweenness values. The following 
process is used 
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1. Calculate the edge betweenness for all edges, e. Edge betweenness is the proportion of shortest
paths between all nodes in a network that pass through an edge. The formula is

𝐵𝐵(𝑒𝑒) = �
𝑃𝑃𝑒𝑒(𝑖𝑖, 𝑗𝑗)
𝑃𝑃(𝑖𝑖, 𝑗𝑗)

𝑖𝑖,𝑗𝑗
where 𝐵𝐵(𝑒𝑒) is the edge-betweenness value for edge 𝑒𝑒, 𝑃𝑃(𝑖𝑖, 𝑗𝑗) is the shortest path between node 
𝑖𝑖 and node 𝑗𝑗, and 𝑃𝑃𝑒𝑒(𝑖𝑖, 𝑗𝑗) is the shortest path between node 𝑖𝑖 and node 𝑗𝑗 that include edge 𝑒𝑒. 

2. Remove the edge with the highest betweenness value 𝐵𝐵(𝑒𝑒)
3. Recalculate the edge betweenness for all remaining edges
4. Repeat steps 2 and 3 until no edges remain in the network

The result of the above algorithm is a dendrogram, which does not naturally decompose the network 
into communities [2]. By default, R’s igraph will return the community structure that results in the 
greatest modularity value. One advantage of the edge-betweenness algorithm is that the user has 
greater ability to influence the granularity of communities in the network. Additionally, other functions 
to measure betweenness can be used to determine edge deletion. One example is the usage of random-
walk betweenness. Random-walk betweenness is based on random walks instead of shortest paths. 

Agglomerative 

Agglomerative community detection methods begin with each node considered as a distinct community 
and iteratively merges similar nodes into communities. These approaches build communities from 
independent structures. 

Walktrap 
Walktrap utilizes the concept of random walks between nodes [3].  Walktrap identifies which 

nodes are close as defined by the probability of walking from node 𝑖𝑖 to node 𝑗𝑗. To control the size of 
detected communities, the distance of the walks can be modified. Pairs of nodes that reduces the 
overall distance between nodes and communities are iteratively merged together.  By focusing on 
random walks, nodes that have high levels of flow between each other are merged into communities. 

The following algorithm is used to determine the set of communities. To start, each node is 
considered a distinct community. 

1. Determine the communities that minimize the change in mean squared distances of nodes and
the community, ∆𝜎𝜎.

2. Merge the two identified communities into a single community
3. Update distances between communities
4. Repeat until all nodes are combined into one community

To calculate the change in mean squared distances, the following formula is used 

∆𝜎𝜎(𝑐𝑐𝑣𝑣 , 𝑐𝑐𝑤𝑤) =
1
𝑛𝑛
∗

|𝑐𝑐𝑣𝑣| |𝑐𝑐𝑤𝑤|
|𝑐𝑐𝑣𝑣| + |𝑐𝑐𝑤𝑤| ∗ 𝑟𝑟𝑐𝑐𝑣𝑣,𝑐𝑐𝑤𝑤

2  
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𝑟𝑟𝑐𝑐𝑣𝑣,𝑐𝑐𝑤𝑤
2 = ��

�𝑃𝑃𝑐𝑐𝑣𝑣,𝑘𝑘 − 𝑃𝑃𝑐𝑐𝑤𝑤,𝑘𝑘�
2

𝑑𝑑𝑘𝑘

𝑛𝑛

𝑘𝑘=1

where |𝑐𝑐𝑣𝑣| is the number of nodes in community 𝑐𝑐𝑣𝑣 (i.e. cardinality of the set), the transition probability 

between nodes 𝑖𝑖 and 𝑗𝑗 is 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖

, the probability of going from between nodes 𝑖𝑖 and 𝑗𝑗 in 𝑡𝑡 steps is

𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡 = (𝑃𝑃𝑡𝑡)𝑖𝑖𝑖𝑖, and the probability of going from community 𝑐𝑐𝑣𝑣 to node 𝑖𝑖  in 𝑡𝑡 steps is 𝑃𝑃𝑐𝑐𝑣𝑣,𝑖𝑖
𝑡𝑡 = 1

|𝑐𝑐𝑣𝑣|
∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗∈𝑐𝑐𝑣𝑣  

Similar to Edge-betweenness, Walktrap results in a dendrogram and igraph will return the community 
structure with the largest modularity.  

Label Propagation 
Label propagation defines communities by having nodes adopt the label of the majority of its 

neighbors, with ties broken at random [4]. The following process is used to propagate labels through the 
network 

1. To start, each node is given a unique label
2. Randomly order the nodes in the network
3. Update each node’s label following the order in step 2. The node takes the label of the majority

of its neighbors. For tied labels, the new label is chosen randomly from the tied labels
4. Repeat steps 2 and 3 until every node has a label that the maximum number of their neighbors

has

Label propagation results in a singular division of the network based on the algorithm. Depending on the 
random number generator, different community divisions may be returned because different labels 
could be assigned. For nodes that lie between two cohesive communities, the label adopted by these 
nodes may be unstable, therefore a seed should be set to obtain consistent results for these nodes. 

Optimization based 

Optimization-based algorithms define an objective function for the community divisions. The algorithm 
then searches for the community division that maximizes this objective function. While some algorithms 
use an agglomerative approach to find the maximum, these methods focus on explicit maximization of 
an overall objective function. 

Louvain (Multilevel) 

The Louvain algorithm, also referred to as the Multilevel algorithm, uses the modularity 
maximization approach [5]. We use Multilevel to refer to this algorithm in the supplementary code. 



Appendix – QA approach 

5 

The Louvain approach uses the following formulation for the change in modularity for adding a single 
node 𝑘𝑘 into the community 𝑣𝑣 

∆𝑄𝑄 =  �
∑ 𝐴𝐴𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼(𝑐𝑐𝑖𝑖 ,𝑣𝑣) ∗ 𝐼𝐼(𝑐𝑐𝑗𝑗 ,𝑣𝑣)𝑖𝑖,𝑗𝑗 + 2 ∗ ∑ 𝐴𝐴𝑘𝑘𝑘𝑘 ∗ 𝐼𝐼(𝑐𝑐𝑗𝑗 , 𝑣𝑣)𝑗𝑗

2𝑚𝑚
− �

∑ 𝐴𝐴𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼(𝑐𝑐𝑖𝑖 ,𝑣𝑣 )𝑖𝑖,𝑗𝑗 + ∑ 𝐴𝐴𝑘𝑘𝑘𝑘𝑗𝑗

2𝑚𝑚
�
2

�

− �
∑ 𝐼𝐼(𝑐𝑐𝑖𝑖 ,𝑣𝑣) ∗ 𝐼𝐼(𝑐𝑐𝑗𝑗 , 𝑣𝑣)𝑖𝑖,𝑗𝑗

2𝑚𝑚
− �

∑ 𝐼𝐼(𝑐𝑐𝑖𝑖 ,𝑣𝑣 )𝑖𝑖,𝑗𝑗

2𝑚𝑚
�
2

− �
∑ 𝐴𝐴𝑘𝑘𝑘𝑘𝑗𝑗

2𝑚𝑚
�
2

� 

Where ∑𝑖𝑖,𝑖𝑖 𝐴𝐴𝑖𝑖 𝑖𝑖 ∗ 𝐼𝐼(𝑐𝑐𝑖𝑖, 𝑣𝑣) ∗ 𝐼𝐼(𝑐𝑐𝑖𝑖, 𝑣𝑣) is the sum of the edges between nodes in community 𝑣𝑣, 
∑𝑖𝑖,𝑖𝑖 𝐴𝐴𝑖𝑖 𝑖𝑖 ∗ 𝐼𝐼(𝑐𝑐𝑖𝑖, 𝑣𝑣 )  is the total sum of edges of nodes in community 𝑣𝑣, ∑𝑖𝑖 𝐴𝐴𝑘𝑘𝑖𝑖  ∗ 𝐼𝐼(𝑐𝑐𝑖𝑖, 𝑣𝑣) is the sum of 
edges between node 𝑘𝑘 to edges in community 𝑣𝑣, and ∑𝑖𝑖 𝐴𝐴𝑘𝑘𝑖𝑖 is the total sum of edges between node 𝑘𝑘 
and nodes in the network. This formula can be generalized to weighted networks. 

The Louvain communities are determined by the following iterative process. The process begins with 
each node belonging to a unique community. 

1. Using the previously defined change in modularity equation, merging each pair of communities
into a single community is evaluated for ∆𝑄𝑄.

2. The community pair which represents the largest, positive gain in ∆𝑄𝑄 is merged.
3. Repeat steps 1 and 2 until there are no additional gains in modularity (i.e. ∆𝑄𝑄 ≤ 0).

The Louvain algorithm results in a single division of the network into communities, where the single 
division of the maximum modularity 𝑄𝑄. The algorithm can be estimated multiple times (with a different 
random seed for each run) and the result with the highest overall modularity (𝑄𝑄) can be chosen to avoid 
a local maxima of modularity.  

As a note, there may be differences in how the Louvain algorithm is implemented across software 

platforms (e.g., igraph vs. Pajek). 

Infomap 
Infomap uses results from information theory to divide the network into communities defined 

by flow through a network [6]. Flow through a network does not need to be explicitly measured, but 
relies on random walks within the network. To help conceptualize the procedure, we will describe a 
coding process based on information theory. Each node is assigned a Huffman codeword. Huffman code 
is an algorithm for assigning codewords using only 0’s and 1’s with short codes for common objects and 
longer codes for rarer objects [7]. Our code for a particular network will be a certain length of numbers. 
To minimize the overall length of our code, we can also consider groups of nodes (communities) to have 
unique codebooks. There are now two sets of codebooks; the codebook for communities and the 
codebook for nodes for each community. The codeword length for a community is based the probability 
of random walks in the network leaving that particular community. The codeword lengths for each node 
within the community is based on the probability at which random walks visit each node in the module 
or leaves the module. By minimizing the overall codebook length, we find the ideal division of the 
network based on random-walk flow.  
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However, Infomap does not require that we actually assign these codewords. Rather, the map 
equation defines the lower bound for the code length. Therefore, we only need to minimize the 
following map equation 

𝐿𝐿(𝑀𝑀) = �� 𝑞𝑞𝛽𝛽

𝑠𝑠

𝛽𝛽=1

� log�� 𝑞𝑞𝛽𝛽

𝑠𝑠

𝛽𝛽=1

� − 2 �𝑞𝑞𝛽𝛽

𝑠𝑠

𝛽𝛽=1

log�𝑞𝑞𝛽𝛽� − � 𝑝𝑝𝛼𝛼 log(𝑝𝑝𝛼𝛼)
𝑛𝑛

𝛼𝛼=1

+ �� 𝑞𝑞𝛽𝛽 + �𝑝𝑝𝛼𝛼
𝛼𝛼∈𝛽𝛽

𝑠𝑠

𝛽𝛽=1

� log�� 𝑞𝑞𝛽𝛽

𝑠𝑠

𝛽𝛽=1

+ �𝑝𝑝𝛼𝛼
𝛼𝛼∈𝛽𝛽

� 

where 𝐿𝐿(𝑀𝑀) is the lower bound for the map equation (the quantity we want to minimize), 𝑠𝑠 is the set of 
current communities, 𝑛𝑛 is the set of all nodes in the network, 𝑞𝑞𝛽𝛽 is the probability of the random walk 
leaving community 𝛽𝛽, 𝑝𝑝𝛼𝛼 is the probability of visiting that particular node, and 𝛼𝛼 ∈ 𝛽𝛽 indicates all nodes 
within model 𝛽𝛽. To find the minimum, the following iterative process is used. To start, each node is 
considered to be its own community 

1. Calculate the map equation for the current configuration
2. In a random order, nodes are merged with the neighboring community that results in the largest

decrease in the map equation from the current configuration. If there is no improvement in the
map equation, the node remains in its current community

3. Step 2 is repeated until there is no additional improvement in 𝐿𝐿(𝑀𝑀) for any nodes
4. A new network is built where each community is now considered as a node. Steps 1-3 are

repeated using this new network until 𝐿𝐿(𝑀𝑀) for the input network no longer decreases.
5. Step 4 is repeated until 𝐿𝐿(𝑀𝑀) no longer decreases

To improve step 4, sub-groups within each community are moved recursively to determine 𝐿𝐿(𝑀𝑀) 
instead of the entire community in implementation. The authors recommend that the algorithm be used 
multiple times (with a different random seed for each run) and use the result that has the smallest 𝐿𝐿(𝑀𝑀) 
over the repeated runs to avoid local minima of the map equation.  

Spinglass 
The Spinglass method reframes community detection as a Hamiltonian operator, the sum of 

kinetic energies and potential energies of all particles in a system [8]. Under this framework, particle 
spin-state refers to edges between nodes in the same community (same spin state) or in different 
communities (different spin states). The Hamiltonian for the network is a function of edges between 
nodes of the same group, edges between nodes of different groups, lack of edges between nodes of the 
same group, and lack of edges between nodes of different groups. With external versus internal links 
and non-links equally weighted, the Hamiltonian reduces to 

ℋ({𝑐𝑐}) =  −��𝐴𝐴𝑖𝑖𝑖𝑖 − 𝛾𝛾𝑝𝑝𝑖𝑖𝑖𝑖�𝐼𝐼�𝑐𝑐𝑖𝑖 =  𝑐𝑐𝑗𝑗�
𝑖𝑖≠𝑗𝑗

 

where 𝑝𝑝𝑖𝑖𝑖𝑖  is the probability of a link between node 𝑖𝑖 and node 𝑗𝑗, and 𝛾𝛾 is a tuning parameter that 
balances the importance of present versus missing edges in a community. Values of 𝛾𝛾 < 1 places greater 
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value on existing edges within a community. 𝑝𝑝𝑖𝑖𝑖𝑖  can be expressed via a variety of different expressions 
depending on the graph under study. In R’s igraph, the probability can be based on either a random
graph with the same number of edges as the baseline probability or following the same degree 
distribution as the input graph. 

To determine the optimal division of the network into communities, the community division 
that minimizes the Hamiltonian needs to be found. To find the global minimum, a simulated annealing 
process is used [9]. The following algorithm is used 

1. Randomly select a division of the network into communities, 𝜎𝜎
2. Evaluate the change in Hamiltonian relative to an assumed spin-state 𝜓𝜓 (similar to another

randomly chosen community division)

Δℋ(𝜓𝜓,𝜎𝜎) = �(𝐴𝐴𝑙𝑙𝑙𝑙 − 𝛾𝛾𝑝𝑝𝑖𝑖𝑖𝑖)
𝑗𝑗≠𝑙𝑙

𝐼𝐼�𝜓𝜓 = 𝑐𝑐𝑗𝑗� −  �(𝐴𝐴𝑙𝑙𝑙𝑙 − 𝛾𝛾𝑝𝑝𝑖𝑖𝑖𝑖)
𝑗𝑗≠𝑙𝑙

𝐼𝐼�𝜎𝜎 = 𝑐𝑐𝑗𝑗� 

3. Decide whether or not to retain the current community division based on the change in
Hamiltonian and a probability.

4. As the process continues, the probability of moving to worse conditions goes to zero. This shift
in probability is referred to as the annealing schedule and avoids the algorithm becoming stuck
in a local optimum.

5. The algorithm terminates once a pre-specified criterion occurs. In keeping with the metallurgical
language of annealing, this criterion is referred to as the stopping temperature. The criterion
depends on the software.

The Spinglass algorithm allows an upper limit on number of communities to be specified. Additionally, a 
similar process can be used to determine the community that a single node belongs to. There are also 
alternative ways to formulate 𝑝𝑝𝑖𝑖𝑖𝑖. Lastly, under the specification of 𝑝𝑝𝑖𝑖𝑖𝑖, the expected values for 
communities under a random graph to determine if the network has evidence of a true underlying 
community structure. 
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eX-FLU case study 

Last Updated 09/13/2019 

Load packages 

library(igraph) 
library(tidyverse) 
library(magrittr) 
library(readr) 

Create Network 
This code imports the original eX-FLU data and ends with the largest component of the undirected 
network. 

  # Load eX-FLU data: 

  # load edge file 
  edgelist = read_csv("../Shared/case study data/edgelist.csv") 

  # load node file 
  hh = read_csv("../Shared/case study data/hh.csv") 

# Join the nodes file to the edges file to make the initial directed graph 
  # n=590 nodes and 2780 edges 

    # create from edgelist and simple nodelist 
    exflu_hh = igraph::simplify(graph_from_data_frame(edgelist, 

      directed = TRUE, 
      vertices = hh), remove.multiple

=TRUE) 

  gsize(exflu_hh) 

## [1] 2780 

  gorder(exflu_hh) 

## [1] 590 

  summary(exflu_hh) 

## IGRAPH dc1448a DN-- 590 2780 -- 
## + attr: name (v/c), wash_num (v/n), wash_time (v/n), washopt (v/n) 

# Adjust other graph options so later graphs will inherit these - make it nic
er for plotting, etc. 
  V(exflu_hh)$label = NA 
  E(exflu_hh)$arrow.size = 0.25 
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  V(exflu_hh)$size = 4 
  V(exflu_hh)$label.cex=0.5 
  V(exflu_hh)$label.dist=2 
  V(exflu_hh)$color = "darkgray" 

# Create layout 
  #set.seed(432197) 
  #n590_layout = layout_with_fr(exflu_hh) 
  #plot(exflu_hh, layout=n590_layout) 
  #save(n590_layout,file="../Shared/results_graphs/n590-fr-layout.RData") 
  load(file="../Shared/results_graphs/n590-fr-layout.RData") 

  # Add the layout to the graph 
  exflu_hh$layout = n590_layout 

  # This layout won't remain when dropping nodes from the graph, so need expl
icit x and y coords also 
  V(exflu_hh)$layoutx = n590_layout[,1] 

  V(exflu_hh)$layouty = n590_layout[,2] 

# Make undirected 

  # the "mutual" argument creates one undirected edge for each pair of vertic
es that are connected by a 
   #mutual (reciprocal) edge 
  new = as.undirected(exflu_hh, mode="mutual") 

# Subset to the largest component 

  # Get a list of components 
  comps = igraph::decompose(new) 

  # Get the size of the largest component  
  max_size = max(sapply(comps, gorder, simplify=TRUE)) 

  # Vector that identifies which of the components is that max size (vector==
TRUE) 
  subset = sapply(comps, function(z) gorder(z) == max_size) 

  # Pick the component that is the max size (TRUE in the subset vector) 
    # the [[1]] ensures that it is an igraph object 
  exflu_undir_mutual = comps[subset][[1]] 
  print(class(exflu_undir_mutual)) 

## [1] "igraph" 
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  # Re-add the consistent 
  exflu_undir_mutual$layout = cbind(V(exflu_undir_mutual)$layoutx, V(exflu_un
dir_mutual)$layouty) 

  summary(exflu_undir_mutual) 

## IGRAPH dc1e5c9 UN-- 314 880 -- 
## + attr: layout (g/n), name (v/c), wash_num (v/n), wash_time (v/n), 
## | washopt (v/n), label (v/l), size (v/n), label.cex (v/n), 
## | label.dist (v/n), color (v/c), layoutx (v/n), layouty (v/n) 

  # removing unneeded things 
  rm(comps, edgelist, hh, n590_layout, new, max_size, subset) 

Graph Input Network 

This code graphs the largest component of the undirected network compared to the original directed 
eX-FLU network. 

# 314 nodes in the mutual network should be colored black 
  summary(exflu_undir_mutual) 

## IGRAPH dc1e5c9 UN-- 314 880 -- 
## + attr: layout (g/n), name (v/c), wash_num (v/n), wash_time (v/n), 
## | washopt (v/n), label (v/l), size (v/n), label.cex (v/n), 
## | label.dist (v/n), color (v/c), layoutx (v/n), layouty (v/n) 

  # change node colors based on node NAME (NOT IGRAPH ID - THESE BECOME 1:N A
ND AREN'T INFORMATIVE) 
  V(exflu_hh)$mutual = if_else(V(exflu_hh)$name %in% V(exflu_undir_mutual)$na
me, 

  "black", "lightgray") 

  # there are 314 black nodes based on this attribute 
  table(V(exflu_hh)$mutual) 

## 
##     black lightgray 
##       314       276 

plots = function(GRAPH, TITLE, VCOLOR, ARROW){ 
  par(mar=c(3.5, 3.5, 2, 1)) 
  plot(GRAPH, main=TITLE, vertex.color=VCOLOR, vertex.frame.color=VCOLOR, edg
e.color="darkgray", edge.arrow.size=ARROW)
}

png("../Shared/results_graphs/Total vs. Mutual Networks.png", width=8, height
=6, units="in", res=500) 
par(mfrow=c(1,2)) 

  plots(exflu_hh, "eX-FLU: Directed \n 590 nodes", "black", 0.25) 
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  plots(exflu_hh, "eX-FLU: Mutual \n 314 nodes", V(exflu_hh)$mutual, 0) 

dev.off() 

## png 
##   2 

rm(plots, exflu_hh) 

include_graphics("../Shared/results_graphs/Total vs. Mutual Networks.png") 

Detect Communities 
mutual_results = list() 

set.seed(12101992) 

("weight" %in% edge_attr_names(exflu_undir_mutual)) 

## [1] FALSE 

# confirmed that I do not have an edge attribute called 'weight' so none of t
hese algorithms are using it by default 
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# NOTE THE DIFFERENCES WITH NA VS. NULL FOR OVER-RIDING EDGEWEIGHTS IF YOU HA
VE A WEIGHT ATTRIBUTE 
mutual_results[[1]] = cluster_edge_betweenness(exflu_undir_mutual, directed = 
FALSE, weights=NULL) 

mutual_results[[2]] = cluster_infomap(exflu_undir_mutual, e.weights=NA) 

mutual_results[[3]] = cluster_walktrap(exflu_undir_mutual, weights=NULL) 

mutual_results[[4]] = cluster_louvain(exflu_undir_mutual, weights=NA) 
mutual_results[[5]] = cluster_label_prop(exflu_undir_mutual, weights=NA) 
mutual_results[[6]] = cluster_spinglass(exflu_undir_mutual, weights = NA) 

names(mutual_results) = c("edgebetween", "infomap", "walktrap", "multilevello
uvain", "labelprop", "spinglass") 

#set_vertex_attr(input, "edgebetween", value=membership(results[[1]])) 
# to query the name of the algorithm: names(mutual_results)[1] 
# to get the membership of each node: membership(mutual_results[[1]]) 

  for (i in 1:6){ 
      exflu_undir_mutual = set_vertex_attr(exflu_undir_mutual, names(mutual_r
esults)[i], value=membership(mutual_results[[i]])) 
  } 

rm(i) 

Walktrap Dendrogram (Figure 1) 
This code visualizes the walktrap dendrogram and shows where the algorithm begins and ends. 

The ‘chosen structure’ (i.e., highest modularity) has 35 communities, which corresponds to the 
community structure returns on the 279th iteration of the algorithm (if we begin on iteration 0). 

library(ggdendro) 

tree = as.dendrogram(mutual_results[["walktrap"]]) 
dendata = dendro_data(tree) 

#dendata$segments$x 
ggplot(data=dendata$segments, horiz=TRUE) + 
  geom_segment(aes(x=y, y=x, xend=yend, yend=xend)) + 
  geom_vline(aes(xintercept = 279, col="Chosen_Structure"), linetype="solid", 
size=1) + 
  geom_vline(aes(xintercept = 0, col="Beginning"), linetype="solid", size=1) 
+



Appendix – QA approach 

14 

  geom_vline(aes(xintercept = 313, col="End"), linetype="solid", size=1) + 
  scale_colour_manual(name="", values=c(Chosen_Structure="red", Beginning="bl
ue", End="green")) + 
  theme_minimal() + 
  scale_y_continuous(breaks=NULL) + 
  scale_x_continuous(breaks=c(seq(0, 320, 20))) + 
  theme(legend.position = "top") + 
  labs(#title="Figure 1: Dendrogram for Walktrap", 

#subtitle="Chosen structure corresponds to the community structure wit
h optimal modularity", 

y="Individual nodes", 
x="Iteration") 

ggsave("../Shared/results_graphs/Figure 1 - Walktrap Dendrogram.png", plot=la
st_plot(), device="png", dpi=300, height=9, width=7) 

rm(tree, dendata) 

include_graphics("../Shared/results_graphs/Figure 1 - Walktrap Dendrogram.png
") 
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Describe Communities 
This code creates a small table to show descriptive statistics for communities under each algorithm. 

library(rlist) 

# for each community result stored in mutual_results, get the sizes of those 
communities 
  comm_sizes = lapply(mutual_results, sizes) 
  # each result has a list of the 'sizes' of the communities 

  # For each list of community sizes, get some descriptive statistics 
    n = unlist(lapply(comm_sizes, length)) # how many communities 
    mean = unlist(lapply(comm_sizes, mean)) # mean size of communities 
    median = unlist(lapply(comm_sizes, median)) # median size of communities 
    min = unlist(lapply(comm_sizes, min)) # minimum size of communities 
    max = unlist(lapply(comm_sizes, max)) # max size of communities 

  # combine those into a dataframe 
    desc = cbind(n, mean, median, min, max) 

kable(desc) 

n mean median min max 
edgebetween 16 19.625000 15.5 4 46 
infomap 38 8.263158 6.0 2 35 
walktrap 35 8.971429 4.0 2 44 
multilevellouvain 13 24.153846 22.0 5 43 
labelprop 21 14.952381 8.0 3 81 
spinglass 17 18.470588 17.0 5 43 
write.csv(desc, file="../Shared/results_tables/Community_Descriptives.csv") 

rm(comm_sizes, desc, n, mean, median, min, max) 

Community Overlap 
This code calculates the amount of overlap between two community structures using the adjusted rand 
index, which ranges from 0 to 1. 

library(ggcorrplot) 
library(ggpubr) 

tmp = mutual_results 
names(tmp) = c("EB", "IM", "WT", "ML", "LP", "SP") 

# for each pairwise combination of results, apply the comparison method using 
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the adjusted rand index 
correlations = sapply(tmp, 

  function(x) sapply(tmp, function(y) compare(x,y, method
='adjusted.rand'))) 
p = ggcorrplot(correlations, type='upper', 

     colors = c("#6D9EC1", "white", "#E46726"), 
     show.diag = TRUE, lab=TRUE, show.legend = FALSE, title="Overla

p Between Methods", lab_size = 5) 

print(p) 

ggsave("../Shared/results_graphs/Algorithm Overlap - adjusted Rand.png", plot
=last_plot(), device="png", dpi=500) 

## Saving 5 x 4 in image 

rm(tmp, p, correlations) 

Graph Community Structures to show discrepancies (Figure 2) 
This code graphs the community structure returned by each algorithm on the same layout, which can 
help visualize how the different algorithms return different results. 

# get edgelist from graph object 
  edges_tmp <- igraph::as_data_frame(exflu_undir_mutual, what="edges") 

# get nodelist from graph object - individuals 
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  nodes_tmp <- igraph::as_data_frame(exflu_undir_mutual, what="vertices") 

# keep only the walktrap assignment 
  nodes_wt = nodes_tmp %>% select(name, walktrap) 

# modify the original edgelist to determine if individuals are in the SAME wa
lktrap community 
  # this is done by merging the walktrap community assignments in 'nodes_wt' 
onto the edgelist for both nodes (i.e., 'from' and 'to') 
  edges_tmp2 = 

    # what is the community number of the 'from' ID? 
    left_join(edges_tmp, nodes_wt, by=c("from"="name")) %>% 
    rename(walktrap_from=walktrap) %>% 

    # what is the community number of the 'to' ID? 
    left_join(nodes_wt, by=c("to"="name")) %>% 
    rename(walktrap_to=walktrap) %>% 

    # if they are in the same community, upweight that edgeweight dramaticall
y 
    # this will improve the look of the graph -- the weight will be used in t
he layout so that people within 
      # the same community are much closer together and make the graph look l
ess messy 
    mutate(weight = if_else(walktrap_from==walktrap_to, 

 25, 1)) 

# Create a graph object 
  tmp <- graph_from_data_frame(edges_tmp2, directed=FALSE, nodes_tmp) 

# Adjust other graph options so later fraphs will inherit these - make it nic
er for plotting, etc. 
  V(tmp)$label = NA 
  E(tmp)$arrow.size = 0.25 
  V(tmp)$size = 4 
  V(tmp)$label.cex=0.5 
  V(tmp)$label.dist=2 
  V(tmp)$color = "darkgray" 

# layout this graph using the edgeweights. calling 'layout consistent' becaus
e this layout will be used to graph all community structures 
  layout_consistent=layout_with_fr(tmp, weights=E(tmp)$weight) 

# function to graph the communities from each algorithm using the same layout 
GRAPH_COMMUNITIES = function(ALGORITHM){ 
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  # take input argument and make it useful for the function 
    algorithm = enquo(ALGORITHM) 
    character = deparse(substitute(ALGORITHM)) 

  # Make the titles 
    if (character=="edgebetween"){ 
      title="Edge-Betweenness" 
    } else if (character=="multilevellouvain"){ 
      title="Multilevel" 
    } else if (character=="labelprop"){ 
      title="Label Propagation" 
    } else { 
      title = str_to_title(character) 
    } 

  # Actually plot the communities 
    plot(mutual_results[[character]], tmp, layout=layout_consistent, 

  vertex.frame.color="darkgray", 
  vertex.color="darkgray", 
  vertex.size=0, 
  edge.color="darkgray", 
  main=title) 

  # Add text on the number of communities 
    mtext(side=1, paste(length(mutual_results[[character]]), "communities"), 
cex=0.6) 

} 

png("../Shared/results_graphs/New Fig 2.png", width=8, height=6, units="in", 
res=500) 
par(mfrow=c(2,3)) 

GRAPH_COMMUNITIES(walktrap) 
GRAPH_COMMUNITIES(edgebetween) 
GRAPH_COMMUNITIES(infomap) 
GRAPH_COMMUNITIES(multilevellouvain) 
GRAPH_COMMUNITIES(labelprop) 
GRAPH_COMMUNITIES(spinglass) 

dev.off() 

## png 
##   2 

rm(GRAPH_COMMUNITIES, edges_tmp, edges_tmp2, layout_consistent, nodes_tmp, no
des_wt, tmp) 

include_graphics("../Shared/results_graphs/New Fig 2.png") 
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Choose communities to intervene (Figure 3) 
This code uses a function to determine which communities to intervene on under each algorithm, and 
an alternative selection procedure (residence hall). 

  # Applicable to all algorithms 
  # get edgelist from exflu_undir_mutual 
  edges_tmp <- igraph::as_data_frame(exflu_undir_mutual, what="edges") 

  # get nodelist from exflu_undir_mutual 
  nodes_tmp <- igraph::as_data_frame(exflu_undir_mutual, what="vertices") 

# Create a function to choose the communities that meet our criteria 
CHOOSE_COMMS = function(ALGORITHM){ 

  # modify input argument to be useful for the function 
  algorithm=enquo(ALGORITHM) 
  character=deparse(substitute(ALGORITHM)) 

  # Make a 'community level network' to determine how connected a community i
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  # Step 1: make an community-level edgelist 
    # Keep just the ID and algorithm assignment within the nodelist 
    name_algorithm <- nodes_tmp %>% select(name, !!algorithm) 

    # Create new edgelist 
    edges_tmp_algorithm <- left_join(edges_tmp, name_algorithm, by=c("from"="
name")) %>% 
      dplyr::rename(V1=!!algorithm) %>% 
      left_join(name_algorithm, by=c("to"="name")) %>% 
      dplyr::rename(V2=!!algorithm) %>% 
      select(-from, -to) %>% 
      group_by(V1, V2) %>% 
      dplyr::summarise(weight=n()) %>% 
      ungroup() 

  # Step 2: Make an community-level nodelist 
    # With the prevalence of optimal/suboptimal HH and community size as attr
ibutes 
    nodes_tmp_algorithm <- nodes_tmp %>% 
      group_by(!!algorithm) %>% 
      dplyr::summarise(n_comm = n(), 

   prop_opt = round(mean(washopt, na.rm=TRUE), digits=2), 
   prop_not_opt = 1-prop_opt) 

    #str(nodes_tmp_algorithm) 

  # Step 3: Combine into an community-level graph 
  graph_tmp <- graph_from_data_frame(edges_tmp_algorithm, directed=FALSE, ver
tices=nodes_tmp_algorithm) 
  #summary(graph_tmp) 
  #summary(E(graph_tmp)$weight) 

  # Simplify to get rid of duplicate edges 
  graph_tmp_simplified <- igraph::simplify(graph_tmp) 
  #summary(graph_tmp_simplified) 
  #summary(E(graph_tmp_simplified)$weight) 

  # Get degree for use in decision rule 
  V(graph_tmp_simplified)$degree_centrality = degree(graph_tmp_simplified) 

  # Output the community-level nodelist 
  communities <- igraph::as_data_frame(graph_tmp_simplified, what="vertices") 
  #str(communities) 

  # Now, we can choose the communities to intervene on according to our decis
ion rule 
  chosen <- communities %>% 
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    mutate(eligible = if_else(prop_not_opt > 0.80 & # prevalence of suboptima
l HH at least 80%

  n_comm >= 5 & # at least 5 people in the comm
unity 

  degree_centrality >= 5, # and connected to at 
least 5 other communities 

  1, 
   0)) %>% 

    # keep only those communities that are eligible 
    filter(eligible==1) %>% 

    # arrange dataset by the proportion of suboptimal, the number in eligible 
comms, and degree centrality 
    # this is essentially our 'priority' ranking of the decision criteria -- 
it doesn't make a difference for our 
    # analyses here, but could be helpful for others 
    # the arrangement will matter for the cumulative sum below, which would i
n theory be used to choose communities from the total pool of eligible commun
ities 
    # for example... if you had lots of eligible communities and exceeded 50 
people, you'd only pick the communities that came first in this ordering unti
l you got to 50 (or the closest number below it without exceeding)
    dplyr::arrange(desc(prop_not_opt), desc(n_comm), (degree_centrality)) %>% 

    # create a running total of the number who are in the eligible communitie
s 
    mutate(cum_sum = cumsum(n_comm), 

 # choose the communities so that we don't exceed intervening on 50 
people 

 chosen = if_else(cum_sum<=50, 1, 0), 
 algorithm=character) %>% 

    select(algorithm, name, eligible, prop_not_opt, n_comm, degree_centrality
, n_comm, prop_opt, cum_sum, chosen)# %>% 

    # don't need to actually choose the chosen ones -- because cumulative sum 
is always below 50 
    #filter(chosen==1) 
    print(paste("We don't need to subset from all eligible communities becaus
e the total number of people in eligible communities is ", max(chosen$cum_sum
), " which is less than 50, our max number to intervene on", sep="")) 

  return(chosen) 

}  



Appendix – QA approach 

23 

WT = CHOOSE_COMMS(walktrap) 

## [1] "We don't need to subset from all eligible communities because the tot
al number of people in eligible communities is 39 which is less than 50, our 
max number to intervene on" 

EB = CHOOSE_COMMS(edgebetween) 

## [1] "We don't need to subset from all eligible communities because the tot
al number of people in eligible communities is 42 which is less than 50, our 
max number to intervene on" 

IM = CHOOSE_COMMS(infomap) 

## [1] "We don't need to subset from all eligible communities because the tot
al number of people in eligible communities is 26 which is less than 50, our 
max number to intervene on" 

ML = CHOOSE_COMMS(multilevellouvain) 

## [1] "We don't need to subset from all eligible communities because the tot
al number of people in eligible communities is 21 which is less than 50, our 
max number to intervene on" 

LP = CHOOSE_COMMS(labelprop) 

## [1] "We don't need to subset from all eligible communities because the tot
al number of people in eligible communities is 22 which is less than 50, our 
max number to intervene on" 

SG = CHOOSE_COMMS(spinglass) 

## [1] "We don't need to subset from all eligible communities because the tot
al number of people in eligible communities is 33 which is less than 50, our 
max number to intervene on" 

    load("../Shared/case study data/res_hall.RData") 

    res_hall_mod = res_hall %>% mutate(name=as.character(STUDY_ID)) %>% selec
t(name, RES_HALL) 

    res_hall_hh = left_join(nodes_tmp, res_hall_mod, by="name") %>% 
      filter(RES_HALL != 555) %>% 
      group_by(RES_HALL) %>% 
      dplyr::summarise(n_reshall = n(), 

   prop_opt = round(mean(washopt, na.rm=TRUE), digits=2), 
   prop_not_opt = 1-prop_opt) %>% 

      ungroup() %>% 
      dplyr::mutate(max = max(prop_not_opt), 

   chosen = if_else(prop_not_opt==max, 1, 0)) %>% 
      filter(chosen==1) %>% 
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      dplyr::mutate(algorithm="reshall", 
   n_comm = n_reshall, 
   degree_centrality=0) 

tmp = bind_rows(WT, EB, IM, ML, LP, SG, res_hall_hh) %>% 
  dplyr::mutate(Algorithm = factor(algorithm, levels = c("walktrap", "edgebet
ween", "infomap", 

"multilevellouvain", 
"labelprop", "spinglass", "reshall"), 

     labels = c("walktrap" = "Walktrap", "edgeb
etween"="Edge-Betweeness", 

      "infomap" = "Infomap", 
      "multilevellouvain" = "Multilev

el", 
      "labelprop" = "Label Propagatio

n", 
      "spinglass" = "Spinglass", 
      "reshall" = "Residence Hall")), 

      # MANUAL JITTERING -- there are a few communities with the ex
act same suboptimal proportion and degree centrality 

      new_degree_centrality = if_else(# for this one, move the info
map dot up bit. leaving the spinglass dot alone 

 prop_not_opt==1.00 & degree_c
entrality==5 & algorithm=="infomap", 

 degree_centrality + 0.2, 

 # for this pair, move the edg
e-betweenness dot up and the spinglass dot down

 if_else(prop_not_opt==0.87 & 
degree_centrality==6 & algorithm=="edgebetween", 

      degree_centrality + 0
.2, 

      if_else(prop_not_opt=
=0.87 & degree_centrality==6 & algorithm=="spinglass", 

    degree_centra
lity - 0.2, 

    # for all oth
er dots, leave them as they are 

    degree_centra
lity)))) 

colours_outside = c("Walktrap" = "black", 
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   "Edge-Betweeness" = "black", 
   "Infomap" = "black", 
   "Multilevel" = "black", 
   "Label Propagation" = "black", 
   "Spinglass" = "black", 
   "Residence Hall" = "black") 

colours_inside = c("Walktrap" = "red", 
  "Edge-Betweeness" = "gray", 
  "Infomap" = "white", 
  "Multilevel" = "gray", 
  "Label Propagation" = "white", 
  "Spinglass" = "gray", 
  "Residence Hall" = "black") 

shape_algorithm = c("Walktrap" = 21, 
   "Edge-Betweeness" = 21, 
   "Infomap"=21, 
   "Multilevel" = 25, 
   "Label Propagation"=25, 
   "Spinglass" = 23, 
   "Residence Hall" = 23) 

#tmp = tmp %>% filter(Algorithm != "Residence Hall") 

ggplot(data=tmp, aes(x=prop_not_opt, 
 y=new_degree_centrality)) + 

  geom_point(aes(fill=Algorithm, 
pch=Algorithm, 
colour=Algorithm), 

   size=sqrt(tmp$n_comm)) + 
  scale_shape_manual(values=shape_algorithm) + 
  scale_fill_manual(values=colours_inside) + 
  scale_colour_manual(values=colours_outside) + 

  labs(x = "Prevalence of Suboptimal Hand Hygiene", 
y = "Connectedness (Degree)")+ 

  theme_bw() + 
  theme(legend.position=c(0.85,0.78), 

 legend.background = element_rect(size=0.5, linetype="solid", 
 colour ="black"), 

 legend.title = element_blank(), 
 legend.key.size = unit(1, 'lines')) + 

  scale_y_continuous(breaks=c(seq(0,10,2)), limits=c(0,10)) 

ggsave("../Shared/results_graphs/Fig 3 Decision Rule.png", plot=last_plot(), 
device="png", dpi=500, width=8, height=6, units="in") 
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totals = tmp %>% dplyr::group_by(algorithm) %>% 
dplyr::summarise(n = sum(n_comm)) 

rm(EB, edges_tmp, IM, LP, ML, nodes_tmp, res_hall, res_hall_hh, res_hall_mod, 
SG, tmp, totals, WT, colours_inside, colours_outside, shape_algorithm, CHOOSE
_COMMS) 

include_graphics("../Shared/results_graphs/Fig 3 Decision Rule.png") 
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