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METHODS SUMMARY 

 

Temperature-dependent R0 models 

In published work (1–3), we have estimated the relative temperature suitability for mosquito-

borne disease transmission as temperature-dependent R0, the basic reproduction number. This 

metric, adapted from previously published models (4,5) to include effects of temperature on 

mosquito demography, biting, and transmission parameters, is expressed as: 

 

𝑅"(𝑇) = '(())*	,())	-())	./0(1)/345(1)	678())	9:;())	<8=())
>	?	@())A

    (1) 

where N is the human population size, r is the human recovery rate, and (T) indicates the 

temperature-sensitive mosquito or parasite traits: biting rate (a), vector transmission probability 

given infection (b), vector infection probability given parasite exposure (c), vector daily 

mortality rate (𝜇, estimated as 1/lifespan in days), parasite extrinsic incubation rate in the vector 

(PDR, in 1/days), eggs laid per female mosquito per day (EFD), and mosquito development rate 

from egg to adult (MDR, in 1/days). We estimated thermal performance curves for each 

temperature-sensitive trait from published laboratory studies that measured traits at three or more 

constant temperatures, both for Anopheles spp. mosquitoes and Plasmodium falciparum parasites 

(1,3) and for Aedes aegypti mosquitoes and dengue, chikungunya, and Zika viruses (2,6). We 

rescaled the resulting R0(T) models to range from zero to one as a metric of relative suitability 

based on temperature. This metric incorporates the multiple, nonlinear effects of temperature on 

transmission, but does not account for variation in human population size, susceptibility, vector 

habitat availability, vector control, or other factors that influence the absolute magnitude of R0. 

We validated the R0(T) models using field data on entomological inoculation rate—the number 
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of infectious mosquitoes per person per year—across Africa over 30 years for malaria (1) and on 

human dengue, chikungunya, and Zika infections across countries in the Americas (2). In both 

cases, the independent field data strongly supported the mechanistically predicted, nonlinear 

effects of temperature on transmission (Fig. 1 in the main text). 

 

Arbovirus and vector surveys in Kenya 

Arbovirus surveys 

Children (less than 18 years of age) with undifferentiated febrile illness attending outpatient care 

in one of the four study locations (Mbaka Oromo Health Centre in Chulaimbo, Obama 

Children’s Hospital in Kisumu, Msambweni District Hospital in Msambweni, and Ukunda/Diani 

Health Center in Ukunda) between 2014 and 2018 were enrolled in this study, as detailed 

elsewhere (7,8). Comprehensive clinical and demographic data were collected in addition to 

phlebotomy at the initial visit. Conventional PCR or targeted, multiplexed, rRT-PCR (9) (when 

available) was performed to evaluate for dengue and chikungunya viremia. Patients were treated 

based on Kenyan Ministry of Health algorithms by local health officers.  

 

Vector surveys  

Ovitraps were placed inside and outside approximately 20 houses per site per month for three to 

six days (mean = four days) each month between 2014 and 2018 as detailed elsewhere (10). Eggs 

laid in each ovitrap were taken to the lab and reared to adulthood for taxonomic identification. 

Mean Aedes aegypti eggs per house per month was calculated as the total number of eggs 

collected divided by the total number of houses sampled for each month and year, and then 

averaged by month across all years. 
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Maps of projected change in suitability for transmission 

We created maps of current and future climate suitability for malaria and dengue transmission to 

illustrate one of many possible future scenarios of climate, human population change, and 

disease risk. The purpose of the maps is to show the consequences of increasing temperatures for 

transmission suitability across Africa, rather than to specifically predict future disease burden, 

which additionally depends on many other factors including rainfall, water storage practices, 

human population size, mobility, and prior exposure history.  

 

The maps illustrate the predictions of mechanistic models (Fig. 1 in the main text) of temperature 

suitability for transmission under current and simulated future climates (Fig. 2 in the main text). 

These maps do not attempt to capture other social and environmental factors that affect 

transmission, although they do include an aridity mask and human population density, as 

described below. While there are many ecological niche models (ENMs) available to describe 

malaria (e.g., (11,12)) and dengue (e.g., (13,14)) suitability as a function of multiple 

environmental and human factors, these models rely on current distributions of disease to infer 

possible future responses to climate change.  ENMs therefore may not accurately capture 

nonlinear thermal responses arising in novel temperature regimes, and may inaccurately describe 

temperature – transmission relationships because of strong geographic signatures of non-climate 

drivers such as economic development and the success of disease control programs (15,16). Our 

goal is to show the direct, nonlinear effects of temperature changes on transmission potential, not 

to predict all future changes in disease burden. For this reason, we focus on mechanistic model 



 5 

predictions that accurately capture nonlinear temperature responses measured in the laboratory 

and observed in the field. 

 

Climate data 

Current mean monthly temperature data were derived from the WorldClim dataset 

(www.worldclim.org) (17), and clipped to the political boundaries of Africa, using GADM 

shapefiles (18). For the future climate scenarios, we selected a general circulation model (GCM) 

among the most commonly used by studies forecasting species distributional shifts: the Hadley 

GCM HadGEM2-ES. We chose the representative concentration pathway (RCP) 8.5, the worst-

case, business-as-usual fossil fuel emissions scenario with no mitigation strategy in place. The 

scenarios are denoted by numbers (e.g., RCP 8.5) corresponding to increased radiation in W/m2 

by the year 2100. We chose the WorldClim data as our current temperature data because they 

have been downscaled and bias-corrected so that they are directly comparable to GCM outputs, 

ensuring that differences between current and future projections are due to predicted temperature 

changes rather than methodological differences. 

 

Climate model output data for the RCP 8.5 scenario were acquired from the research program on 

Climate Change, Agriculture, and Food Security (CCAFS) web portal (19), part of the 

Consultative Group for International Agricultural Research (CGIAR). We used the model 

outputs created using the delta downscaling method, from the IPCC AR5.  

 

Population Data 
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To describe the human population at risk, comparable between current and future climate 

scenarios, we used population count data from the Gridded Population of the World, version 4 

(GPW4) (20), predicted for the year 2015, following methods described in (21). This data 

product was interpolated from the most recently available census data at the smallest 

administrative unit globally but was otherwise minimally modeled. We used 30 arc-second 

gridded population data aggregated to match the climate scenarios (5-minute resolution), from 

the 2015 population count dataset. In analyses of future climate scenarios, we kept population 

data constant to ensure that mapped results were not affected by arbitrary assumptions about 

demographic projections into the future.  

 

Aridity Mask 

Following the methods described in (22), we excluded areas too arid for anopheline mosquito 

life-cycles, using long-term remotely sensed vegetation data. We used long term average 

monthly Normalized Difference Vegetation Index (NDVI) data to create an exclusion criterion as 

a function of the number of months below a threshold within a year (sensu (23)). We used the 

NDVI-based aridity mask derived in our previously published work for both the malaria and 

dengue maps (22). We did not develop a separate Aedes aridity mask because these mosquitoes 

are able to breed in water containers as small as a bottle cap, and are well adapted to urban 

environments, so their breeding habitat is disconnected from larger moisture patterns and more 

closely governed by human water use behavior around the domestic environment. Thus, we do 

not anticipate large scale predictive climate products to capture this relationship with breeding 

habitat, and rather assume it is better described by human population distributions, detailed in the 

previous section. 
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Mapping  

The upper and lower bounds of the temperature range for relative R0 > 0.5 on the median 

posterior probability curve for each of the malaria (3) and Aedes aegypti dengue (2) models was 

projected onto the climate data using the ‘raster’ package in R version 3.1.1 (24). The output of 

number of temperature-suitable months per year were rescaled to range from 0-1, multiplied by 

log(1+ population density). The anopheline aridity mask was overlaid, and the resulting maps 

plotted in R (Fig. 2A-F in the main text).  

 

Because we are working with relative R0 rather than absolute R0—for which the magnitude 

varies according to many location-specific factors—we cannot directly specify the temperature at 

which R0 = 1 as a threshold for transmission. Instead, we define high temperature suitability 

based on the (arbitrary) threshold of relative R0 > 0.5, and count the number of months per year 

in which each location has average temperatures within this “high risk” range. Because the 

relationship between R0 and incidence or prevalence is nonlinear, and saturates as absolute R0 

begins to greatly exceed 1 (25,26), we do not expect linear increases in relative R0 between 0.5 

and 1 to translate into linear increases in prevalence or incidence. To be conservative, we assume 

that the greatest effects of temperature on incidence will occur at marginal temperatures where 

absolute R0 goes from near zero to just above 1, rather than at highly suitable temperatures near 

the optimum. Therefore, we arbitrarily set relative R0 = 0.5 as a threshold for considering 

temperatures to be highly suitable, while acknowledging that in some settings where overall 

transmission potential is relatively low (i.e., maximum absolute R0 ~ 1), small changes in 

temperature near the optimum could have a large effect on incidence. Similar approaches that 
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use R0 = 0 as the critical threshold produce similar results (21,22), though this alternative 

assumption captures all locations in which transmission is theoretically possible, rather than 

locations where temperature suitability is high, as we aimed to capture here. Our aim was to 

qualitatively illustrate the type of temperature-driven shifts in disease transmission we might 

expect under climate change, rather than to make a specific quantitative and geospatial 

prediction. 
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