-

Statistical Method Supplement

2

3 <u>Description</u>: Supplemental statistical method material for Pneumonia Hospitalization

- 4 Coding Changes associated with Transition from the 9th to 10th Revision of International
- 5 Classification of Diseases
- 6

7 1. Introduction

8 When a disease is diagnosed by different diagnostic algorithms in different 9 populations, or in the same population at different time points, the reported disease 10 incidence rates cannot be compared directly because of differences in accuracy of 11 the diagnostic algorithms. If we take one population, or time point, as the standard 12 or baseline, then incidence rates of the other populations, or time points, need to be 13 adjusted according to the relative accuracy of the corresponding algorithms at 14 baseline. To account for changes in diagnostic coding systems used to identify 15 patients hospitalized with pneumonia, we developed a simple, yet general method, 16 for such adjustment. We describe the method as well as its implementation details in 17 this short statistical supplement.

18

19 2. Main results

20 Because of the transition from ICD-9-CM to ICD-10-CM in October 2015, we have

21 two periods P_b (pre- ICD10-CM implementation) and P_a (post- ICD10-CM

implementation) in our study using two different diagnostic algorithms A_b (ICD-9-CM

- 23 algorithm) and A_a (ICD-10-CM algorithm) used to identify the same disease D
- 24 (pneumonia). Although the approach is designed to allow comparisons of rates over
- 25 time and encompassing the transition of ICD coding systems, for the derivation of the

26 estimates we assumed that the underlying population remained generally constant during the two periods and that there were no changes in the true incidence of the 27 28 disease during the transition of coding systems. Our objective was to derive an 29 adjustment factor that could be applied to correct for the impact of the coding system 30 transition. Thus, using r_b and r_a as the corresponding observed incidence rates for 31 each period, the application of our adjustment factor to r_a would make it comparable 32 to r_h . 33 A diagnostic algorithm's accuracy is summarized by its sensitivity and specificity.¹⁻³ 34 Considering algorithm A_b as the gold standard, the relative accuracy of A_a relative to 35 A_b can be defined by following two quantities: 36 $\theta = P(A_a = 1 | A_b = 1)$ [1] $\delta = P(A_a = 1 | A_b = 0)$ 37 [2] 38 39 Here each algorithm takes the value of 1 or 0 if the disease was either diagnosed by 40 the algorithm or not. θ and $1 - \delta$ are the sensitivity and specificity of A_a relative to 41 A_h , respectively. 42 43 If we know both θ and δ then the disease rate r_a from applying algorithm A_a can be 44 adjusted to \hat{r}_a , which is comparable to what would be produced if the gold standard 45 algorithm A_b was applied. \hat{r}_a can be easily calculated by the following formula:

46

47
$$\hat{r}_a = \frac{r_a - \delta}{\theta - \delta}$$
 [3]

48

49 For example, if A_a is identical to A_b , then $\theta = 1$ and $\delta = 0$, hence $\hat{r}_a = r_a$, and no 50 adjustment is needed. 51

To estimate the sensitivity, one can take a random sample of patients diagnosed by the gold standard algorithm A_b (i.e., $A_b = 1$), and then apply algorithm A_a to the sample. The frequency of pneumonia captured by the A_a algorithm would be an unbiased estimate of the sensitivity θ .

57 While, in principle, we can estimate the specificity $1 - \delta$ in a similar manner by taking 58 a random sample of subjects that do not have pneumonia from applying algorithm A_b 59 (i.e., $A_b = 0$), and then apply algorithm A_a to the sample, and count the number of 60 patients without pneumonia, it is not practical for most diseases because of the 61 usually low prevalence rate of the disease in study population. We would have to 62 apply both algorithms to a large number of healthy subjects in order to obtain a 63 reasonable estimation of the specificity.

64

65 On the other hand, it is relatively simple to estimate the positive predictive value 66 (PPV) of A_a relative to A_b . Here PPV is defined as:

- 67
- 68

 $PPV = P(A_b = 1 | A_a = 1)$ [4]

69

Namely, the proportion of pneumonia captured by the gold standard algorithm A_b among those who were captured as pneumonia by algorithm A_a ²⁻³. Unlike the specificity, $1 - \delta$, PPV can be estimated easily by taking a sample of patients that are diagnosed as positive by A_a , then applying A_b to the same sample and count the number classified as pneumonia. In fact, our study was designed such that PPV and the sensitivity θ can be estimated from two samples of 500 pneumonia cases each

76captured by the ICD-9-CM algorithm
$$(A_b)$$
 and the ICD-10-CM algorithm (A_a) ,77respectively.78If we also know the incidence rate r_b from applying the gold standard algorithm A_b ,79If we also know the incidence rate r_b from applying the gold standard algorithm A_b ,80then there is an established relationship between PPV and specificity²:81 $PPV = \frac{\partial r_b}{\partial r_b + \delta (1 - r_b)}$ 82 $PPV = \frac{\partial r_b}{\partial r_b + \delta (1 - r_b)}$ 84 $\delta = \theta \frac{r_b (1 - PPV)}{(1 - r_b)PPV}$ 85[5]86Should we apply both algorithms in the same population, then the adjusted rate \hat{r}_a 87Should we apply both algorithms in the same population, then the adjusted rate \hat{r}_a 88derived from algorithm A_a should equal to the unadjusted rate r_b derived from89algorithm A_b . Therefore, from equation [3] and [5] together, we obtain a simple, yet90general formula to calculate the adjusted incidence rate as in the following Lemma:91Lemma: If θ , the sensitivity of A_a relative to A_b and PPV, the positive predictive92value, as defined in Equation [1] and [4], are both known, then the incidence rate r_a 93from applying A_a can be adjusted by applying the following formula:94 $r_a = r_a \frac{PPV}{a}$ [6]95 $r_a = r_a \frac{PPV}{a}$ [6]96To be comparable with incidence rates from the gold standard algorithm A_b , we can98use $\frac{PPV}{a}$ as the adjustment factor.

100 3. Implementation of the method:

101

102	As discussed in the paper, there is substantial variability in applying the two
103	algorithms, along with the sampling variability of selecting patients. Such variability
104	is reflected by the different sensitivity and PPV values. Some variability is
105	systematic, such as the difference between children and adult patients, while other
106	variability appears random, such as variability among coders. We follow general
107	epidemiology and statistical practices to deal with these variabilities. For systematic
108	variability, we stratified the analysis by the systematic factors. Hence, our results are
109	analyzed and reported by children and adults separately.
110	
111	We could consider coders as a random effect if we had a relatively large number of
112	coders (say greater or equal to 5). However, in our study, we had three coders for
113	children and four coders for adults. Hence, it was not possible to construct a random
114	effect model to estimate the sampling distribution of the sensitivity and PPV. Instead
115	of that, we considered the means of sensitivity and PPV to be distributed uniformly in
116	the ranges of the observed sensitivity and PPV values. For given means and sample
117	sizes, the actual sensitivity and PPV values were considered as samples from
118	binomial distributions with the means and sample sizes, which in turn could be
119	approximately by normal distributions for large and moderate sample sizes. Then we
120	applied the following procedure to generate 10,000 values of the adjusted factor:
121	Step 1: Stratified by children and adults, obtain corresponding ranges of
122	sensitivity and PPV.
123	Step 2: Repeat 10,000 times:
124	Step 2.1: Sample uniformly from the ranges to get mean values of

sensitivity and PPV

126	Step 2.2. Use the mean value and sample size 500, to calculate standard
127	errors of the observed sensitivity and PPV.
128	Step 2.3. Sample from normal distributions with above mean and SE to
129	obtain a realization of sensitivity and PPV.
130	Step 2.4. Calculate the adjustment factor based on the realization.
131	Step 3: Calculate summary statistic of the adjustment factors based on the
132	10,000 values.
133	
134	In the main paper, we reported the mean and standard deviation (translated to
135	credible region) of the 10,000 values.
136	
137	4. References:
138	
139	1. K. Chu, An introduction to sensitivity, specificity, predictive values and likelihood
140	ratios. Emergency Medicine. 1999; 11: 175-181
141	2. R. Simon, Sensitivity, specificity, PPV, and NPV for predictive biomarkers.
142	Journal of National Cancer Institute. 2015; 107(8): djv153
143	3. M. Stojanovic, et. al., Understanding sensitivity, specificity and predictive values.
144	Vojnosanitetski Pregled. 2014; 71(11): 1062-1065
145	
146	
147	Figure S1: Adjustment factor for pneumonia hospitalization rates using a discharge code
148	algorithm ² for children (a) and adults (b) after transition to ICD-10-CM
149	
150	a) Children <u><</u> 5 Years of Age

153 b) Adults <a>>65 years of Age

155 Vertical lines represent mean and 95% credible region

156	
157	