Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Probabilistic reconstruction of measles transmission clusters from routinely collected surveillance data

Filetype[PDF-1.09 MB]


  • English

  • Details:

    • Alternative Title:
      J R Soc Interface
    • Description:
      Pockets of susceptibility resulting from spatial or social heterogeneity in vaccine coverage can drive measles outbreaks, as cases imported into such pockets are likely to cause further transmission and lead to large transmission clusters. Characterizing the dynamics of transmission is essential for identifying which individuals and regions might be most at risk. As data from detailed contact-tracing investigations are not available in many settings, we developed an R package called | to reconstruct the transmission clusters and the importation status of the cases from their age, location, genotype and onset date. We compared our inferred cluster size distributions to 737 transmission clusters identified through detailed contact-tracing in the USA between 2001 and 2016. We were able to reconstruct the importation status of the cases and found good agreement between the inferred and reference clusters. The results were improved when the contact-tracing investigations were used to set the importation status before running the model. Spatial heterogeneity in vaccine coverage is difficult to measure directly. Our approach was able to highlight areas with potential for local transmission using a minimal number of variables and could be applied to assess the intensity of ongoing transmission in a region.
    • Pubmed ID:
      32603651
    • Pubmed Central ID:
      PMC7423430
    • Document Type:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov