Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Medium Frequency Vehicular Control And Communication Systems For Underground Mines

Filetype[PDF-506.04 KB]



Details:

  • Description:
    Theoretical and experimental research sponsored by the U.S. Bureau of Mines shows that medium frequency (MF) electromagnetic (EM) signals propagate great distances in an underground environment such as a tunnel or mine. This propagation is enhanced by different mechanisms associated with the geology, and with the existence of metallic conductors in the entryways. In stratified geologies, a transverse electromagnetic (TEM) mode of signal propagation is possible if a low conducting layer is bounded above and below by higher conducting layers. In general, the difference in conductivities must be at least several orders of magnitude. Such geological waveguide conditions often exist in underground mines. Propagation via the waveguide effect is known as the "seam mode" of propagation. Another mode of propagation, the "tunnel mode," exists in underground entries with electrical conductors such as power cables, metal pipes, and phone lines. A monofilar mode of propagation exists when signals are impressed upon conductors and return via the surrounding rock. A bifilar mode of propagation exists when all signals exist only on local conductors. In a given location there is a combination of monofilar and bifilar modes that make possible an interaction between the conductors and a transmitting device in a tunnel or entryway. Signals can be impressed on or received from local conductors via magnetic dipole antennas (loops) or line couplers.
  • Subjects:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at stacks.cdc.gov