Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Methane-Air Mixtures Ignited By CW Laser-Heated Targets On Optical Fiber Tips: Comparison Of Targets, Optical Fibers, And Ignition Delays

Filetype[PDF-1.99 MB]



Details:

  • Description:
    Fiber optic systems are being deployed in locations where explosive gas atmospheres are normally present or are present under fault conditions. The National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory (NIOSH, PRL) conducted a study of laser safety in potentially flammable environments. Researchers conducted experiments to estimate the mean and standard deviation of laser powers needed to ignite 6% methane-air atmospheres using single mode optical fiber tips covered by two types of iron oxide (Fe304 and (FeMn)203) mixed with a ceramic adhesive. The iron oxides, heated by a 1064 nm continuous wave laser, ignited the methane-air mixtures ,at similar powers. The minimum igniting power and maximum non-igniting power (10 tests) were 407 and 350 mW, respectively, using a 62.5 pm fiber. Laser beams guided by 125 and 80 pm diameter cladding single mode fibers produced similar methane-air igniting powers. Ignition was not observed using coal particles at powers that produced ignition with the iron oxides. Threshold ignition delays using the single mode fiber were approximately proportional to the inverse square of the igniting power. Ignition delays were significantly longer than the reported activation time for a commercial fiber optic power limiter. Comparisons are made with the results of other researchers. Published by Elsevier Ltd.
  • Subjects:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at stacks.cdc.gov